最近在学习深度学习,已经跑出了几个模型,但Pyhton的基础不够扎实,因此,开始补习Python了,大家都推荐廖雪峰的课程,因此,开始了学习,但光学有没有用,还要和大家讨论一下,因此,写下这些帖子,廖雪峰的课程连接在这里:廖雪峰
Python的相关介绍,以及它的历史故事和运行机制,可以参见这篇:python介绍
Python的安装可以参见这篇:Python安装
Python的运行模式以及输入输出可以参见这篇:Python IO
Python的基础概念介绍,可以参见这篇:Python 基础
Python字符串和编码的介绍,可以参见这篇:Python字符串与编码
Python基本数据结构:list和tuple介绍,可以参见这篇:Python list和tuple
Python控制语句介绍:ifelse,可以参见这篇:Python 条件判断
Python控制语句介绍:循环实现,可以参见这篇:Python循环语句
Python数据结构:dict和set介绍Python数据结构dict和set
Python函数相关:Python函数
Python高阶特性:Python高级特性
Python高阶函数:Python高阶函数
Python匿名函数:Python匿名函数
Python装饰器:Python装饰器
Python偏函数:Python偏函数
Python模块:Python模块
Python面向对象编程(1):Python面向对象
Python面向对象编程(2):Python面向对象(2)
Python面向对象编程(3):Python面向对象(3)
Python面向对象编程(4):Pyhton面向对象(4)
Python面向对象高级编程(上):Python面向对象高级编程(上)
Python面向对象高级编程(中上):Python面向对象高级编程(中上)
Python面向对象高级编程(中下):Python面向对象高级编程(中下)
Python面向对象高级编程(完):Python面向对象高级编程(完)
Python错误调试(起):Python调试:起
Python错误调试(承):Python调试:承
Python错误调试(转):Python调试:转
Python错误调试(合):python调试:合
Python文件IO编程:Python文件IO
Python文件IO编程2:Python文件IO2
Python文件IO编程3:PYthon文件IO3
Python进程和线程(起):Python进程和线程起
Python进程和线程(承):Python进程和线程承
Python进程和线程(转):Python进程和线程转
Python进程和线程(合):Python进程和线程合
字符串是编程时涉及到的最多的一种数据结构,对字符串进行操作的需求几乎无处不在。比如判断一个字符串是否是合法的Email地址,虽然可以编程提取@前后的子串,再分别判断是否是单词和域名,但这样做不但麻烦,而且代码难以复用。
正则表达式是一种用来匹配字符串的强有力的武器。它的设计思想是用一种描述性的语言来给字符串定义一个规则,凡是符合规则的字符串,我们就认为它“匹配”了,否则,该字符串就是不合法的。
所以我们判断一个字符串是否是合法的Email的方法是:
创建一个匹配Email的正则表达式;
用该正则表达式去匹配用户的输入来判断是否合法。
因为正则表达式也是用字符串表示的,所以,我们要首先了解如何用字符来描述字符。
在正则表达式中,如果直接给出字符,就是精确匹配。用\d可以匹配一个数字,\w可以匹配一个字母或数字,所以:
'00\d'可以匹配'007',但无法匹配'00A';
'\d\d\d'可以匹配'010';
'\w\w\d'可以匹配'py3';
.可以匹配任意字符,所以:
'py.'可以匹配'pyc'、'pyo'、'py!'等等。
要匹配变长的字符,在正则表达式中,用*表示任意个字符(包括0个),用+表示至少一个字符,用?表示0个或1个字符,用{n}表示n个字符,用{n,m}表示n-m个字符:
来看一个复杂的例子:\d{3}\s+\d{3,8}。
我们来从左到右解读一下:
\d{3}表示匹配3个数字,例如'010';
\s可以匹配一个空格(也包括Tab等空白符),所以\s+表示至少有一个空格,例如匹配' ',' '等;
\d{3,8}表示3-8个数字,例如'1234567'。
综合起来,上面的正则表达式可以匹配以任意个空格隔开的带区号的电话号码。
如果要匹配’010-12345’这样的号码呢?由于’-‘是特殊字符,在正则表达式中,要用’\’转义,所以,上面的正则是\d{3}-\d{3,8}。
但是,仍然无法匹配’010 - 12345’,因为带有空格。所以我们需要更复杂的匹配方式。
要做更精确地匹配,可以用[]表示范围,比如:
[0-9a-zA-Z\_]可以匹配一个数字、字母或者下划线;
[0-9a-zA-Z\_]+可以匹配至少由一个数字、字母或者下划线组成的字符串,比如'a100','0_Z','Py3000'等等;
[a-zA-Z\_][0-9a-zA-Z\_]*可以匹配由字母或下划线开头,后接任意个由一个数字、字母或者下划线组成的字符串,也就是Python合法的变量;
[a-zA-Z\_][0-9a-zA-Z\_]{0, 19}更精确地限制了变量的长度是1-20个字符(前面1个字符+后面最多19个字符)。
A|B可以匹配A或B,所以(P|p)ython可以匹配'Python'或者'python'。
^表示行的开头,^\d表示必须以数字开头。
$表示行的结束,\d$表示必须以数字结束。
你可能注意到了,py也可以匹配’python’,但是加上^py$就变成了整行匹配,就只能匹配’py’了。
有了准备知识,我们就可以在Python中使用正则表达式了。Python提供re模块,包含所有正则表达式的功能。由于Python的字符串本身也用\转义,所以要特别注意:
s = 'ABC\\-001' # Python的字符串
# 对应的正则表达式字符串变成:
# 'ABC\-001'
因此我们强烈建议使用Python的r前缀,就不用考虑转义的问题了:
s = r'ABC\-001' # Python的字符串
# 对应的正则表达式字符串不变:
# 'ABC\-001'
先看看如何判断正则表达式是否匹配:
>>> import re
>>> re.match(r'^\d{3}\-\d{3,8}$', '010-12345')
<_sre.SRE_Match object; span=(0, 9), match='010-12345'>
>>> re.match(r'^\d{3}\-\d{3,8}$', '010 12345')
>>>
match()方法判断是否匹配,如果匹配成功,返回一个Match对象,否则返回None。常见的判断方法就是:
test = '用户输入的字符串'
if re.match(r'正则表达式', test):
print('ok')
else:
print('failed')
用正则表达式切分字符串比用固定的字符更灵活,请看正常的切分代码:
>>> 'a b c'.split(' ')
['a', 'b', '', '', 'c']
嗯,无法识别连续的空格,用正则表达式试试:
>>> re.split(r'\s+', 'a b c')
['a', 'b', 'c']
无论多少个空格都可以正常分割。加入,试试:
>>> re.split(r'[\s\,]+', 'a,b, c d')
['a', 'b', 'c', 'd']
再加入;试试:
>>> re.split(r'[\s\,\;]+', 'a,b;; c d')
['a', 'b', 'c', 'd']
如果用户输入了一组标签,下次记得用正则表达式来把不规范的输入转化成正确的数组。
除了简单地判断是否匹配之外,正则表达式还有提取子串的强大功能。用()表示的就是要提取的分组(Group)。比如:
^(\d{3})-(\d{3,8})$分别定义了两个组,可以直接从匹配的字符串中提取出区号和本地号码:
>>> m = re.match(r'^(\d{3})-(\d{3,8})$', '010-12345')
>>> m
<_sre.SRE_Match object; span=(0, 9), match='010-12345'>
>>> m.group(0)
'010-12345'
>>> m.group(1)
'010'
>>> m.group(2)
'12345'
如果正则表达式中定义了组,就可以在Match对象上用group()方法提取出子串来。
注意到group(0)永远是原始字符串,group(1)、group(2)……表示第1、2、……个子串。
提取子串非常有用。来看一个更凶残的例子:
>>> t = '19:05:30'
>>> m = re.match(r'^(0[0-9]|1[0-9]|2[0-3]|[0-9])\:(0[0-9]|1[0-9]|2[0-9]|3[0-9]|4[0-9]|5[0-9]|[0-9])\:(0[0-9]|1[0-9]|2[0-9]|3[0-9]|4[0-9]|5[0-9]|[0-9])$', t)
>>> m.groups()
('19', '05', '30')
这个正则表达式可以直接识别合法的时间。但是有些时候,用正则表达式也无法做到完全验证,比如识别日期:
'^(0[1-9]|1[0-2]|[0-9])-(0[1-9]|1[0-9]|2[0-9]|3[0-1]|[0-9])$'
对于’2-30’,’4-31’这样的非法日期,用正则还是识别不了,或者说写出来非常困难,这时就需要程序配合识别了。
最后需要特别指出的是,正则匹配默认是贪婪匹配,也就是匹配尽可能多的字符。举例如下,匹配出数字后面的0:
>>> re.match(r'^(\d+)(0*)$', '102300').groups()
('102300', '')
由于\d+采用贪婪匹配,直接把后面的0全部匹配了,结果0*只能匹配空字符串了。
必须让\d+采用非贪婪匹配(也就是尽可能少匹配),才能把后面的0匹配出来,加个?就可以让\d+采用非贪婪匹配:
>>> re.match(r'^(\d+?)(0*)$', '102300').groups()
('1023', '00')
当我们在Python中使用正则表达式时,re模块内部会干两件事情:
编译正则表达式,如果正则表达式的字符串本身不合法,会报错;
用编译后的正则表达式去匹配字符串。
如果一个正则表达式要重复使用几千次,出于效率的考虑,我们可以预编译该正则表达式,接下来重复使用时就不需要编译这个步骤了,直接匹配:
>>> import re
# 编译:
>>> re_telephone = re.compile(r'^(\d{3})-(\d{3,8})$')
# 使用:
>>> re_telephone.match('010-12345').groups()
('010', '12345')
>>> re_telephone.match('010-8086').groups()
('010', '8086')
编译后生成Regular Expression对象,由于该对象自己包含了正则表达式,所以调用对应的方法时不用给出正则字符串。
正则表达式非常强大,要在短短的一节里讲完是不可能的。要讲清楚正则的所有内容,可以写一本厚厚的书了。如果你经常遇到正则表达式的问题,你可能需要一本正则表达式的参考书。