spark常规性能调优三:并行度调节

Spark作业中的并行度指各个stagetask的数量

如果并行度设置不合理而导致并行度过低,会导致资源的极大浪费,例如,20个Executor,每个Executor分配3个CPU core,而Spark作业有40个task,这样每个Executor分配到的task个数是2个,这就使得每个Executor有一个CPU core空闲,导致资源的浪费。

理想的并行度设置,应该是让并行度与资源相匹配,简单来说就是在资源允许的前提下,并行度要设置的尽可能大,达到可以充分利用集群资源。合理的设置并行度,可以提升整个Spark作业的性能和运行速度。

Spark官方推荐,task数量应该设置为Spark作业总CPU core数量的2~3。之所以没有推荐task数量与CPU core总数相等,是因为task的执行时间不同,有的task执行速度快而有的task执行速度慢,如果task数量与CPU core总数相等,那么执行快的task执行完成后,会出现CPU core空闲的情况。如果task数量设置为CPU core总数的2~3倍,那么一个task执行完毕后,CPU core会立刻执行下一个task,降低了资源的浪费,同时提升了Spark作业运行的效率。

Spark作业并行度的设置如代码所示:

 Spark作业并行度设置

val conf = new SparkConf().set("spark.default.parallelism", "500")

 

你可能感兴趣的:(Spark)