深度学习之LSTM案例分析(三)

#背景

来自GitHub上《tensorflow_cookbook》【https://github.com/nfmcclure/tensorflow_cookbook/tree/master/09_Recurrent_Neural_Networks】

 

Stacking Multiple LSTM Layers

We stack multiple LSTM layers to improve on our Shakespeare language generation. (Character level vocabulary)

堆叠多个LSTM层以改进我们的莎士比亚语言生成。 (字符级词汇)

此内容为《深度学习之LSTM案例分析(二)》的补充。【https://blog.csdn.net/m0_37621024/article/details/88965957】

 

#代码

#Stacking LSTM Layers
#---------------------
#  Here we implement an LSTM model on all a data set of Shakespeare works.
#  在这里,我们在莎士比亚作品的所有数据集上实现LSTM模型。
#  We will stack multiple LSTM models for a more accurate representation of Shakespearean language.  
#  We will also use characters instead of words.
#  我们将堆叠多个LSTM模型,以更准确地表示莎士比亚语言。我们还将使用字符而不是单词。

import os
import re
import string
import requests
import numpy as np
import collections
import random
import pickle
import matplotlib.pyplot as plt
import tensorflow as tf
from tensorflow.python.framework import ops
ops.reset_default_graph()

'''Start a computational graph session.'''
# Start a session
sess = tf.Session()

# Set RNN Parameters
num_layers = 3  # Number of RNN layers stacked
min_word_freq = 5  # Trim the less frequent words off
rnn_size = 128  # RNN Model size, has to equal embedding size
epochs = 10  # Number of epochs to cycle through data
batch_size = 100  # Train on this many examples at once
learning_rate = 0.0005  # Learning rate
training_seq_len = 50  # how long of a word group to consider
save_every = 500  # How often to save model checkpoints
eval_every = 50  # How often to evaluate the test sentences
prime_texts = ['thou art more', 'to be or not to', 'wherefore art thou']

# Download/store Shakespeare data
data_dir = 'temp'
data_file = 'shakespeare.txt'
model_path = 'shakespeare_model'
full_model_dir = os.path.join(data_dir, model_path)

# Declare punctuation to remove, everything except hyphens and apostrophes
punctuation = string.punctuation
punctuation = ''.join([x for x in punctuation if x not in ['-', "'"]])

# Make Model Directory
if not os.path.exists(full_model_dir):
    os.makedirs(full_model_dir)

# Make data directory
if not os.path.exists(data_dir):
    os.makedirs(data_dir)

'''Load the Shakespeare Data'''
print('Loading Shakespeare Data')
# Check if file is downloaded.
if not os.path.isfile(os.path.join(data_dir, data_file)):
    print('Not found, downloading Shakespeare texts from www.gutenberg.org')
    shakespeare_url = 'http://www.gutenberg.org/cache/epub/100/pg100.txt'
    # Get Shakespeare text
    response = requests.get(shakespeare_url)
    shakespeare_file = response.content
    # Decode binary into string
    s_text = shakespeare_file.decode('utf-8')
    # Drop first few descriptive paragraphs.
    s_text = s_text[7675:]
    # Remove newlines
    s_text = s_text.replace('\r\n', '')
    s_text = s_text.replace('\n', '')
    
    # Write to file
    with open(os.path.join(data_dir, data_file), 'w') as out_conn:
        out_conn.write(s_text)
else:
    # If file has been saved, load from that file
    with open(os.path.join(data_dir, data_file), 'r') as file_conn:
        s_text = file_conn.read().replace('\n', '')
'''
运行结果:
Loading Shakespeare Data
Not found, downloading Shakespeare texts from www.gutenberg.org
Done Loading Data.
'''

'''Clean and split the text data.'''
# Clean text
print('Cleaning Text')
s_text = re.sub(r'[{}]'.format(punctuation), ' ', s_text)
s_text = re.sub('\s+', ' ', s_text).strip().lower()

# Split up by characters
char_list = list(s_text)
'''
运行结果:
Cleaning Text
'''

'''Build word vocabulary function and transform the text.'''
# Build word vocabulary function
def build_vocab(characters):
    character_counts = collections.Counter(characters)
    # Create vocab --> index mapping
    chars = character_counts.keys()
    vocab_to_ix_dict = {key: (inx + 1) for inx, key in enumerate(chars)}
    # Add unknown key --> 0 index
    vocab_to_ix_dict['unknown'] = 0
    # Create index --> vocab mapping
    ix_to_vocab_dict = {val: key for key, val in vocab_to_ix_dict.items()}
    return ix_to_vocab_dict, vocab_to_ix_dict


# Build Shakespeare vocabulary
print('Building Shakespeare Vocab by Characters')
ix2vocab, vocab2ix = build_vocab(char_list)
vocab_size = len(ix2vocab)
print('Vocabulary Length = {}'.format(vocab_size))
# Sanity Check
assert(len(ix2vocab) == len(vocab2ix))
'''
运行结果:
Building Shakespeare Vocab by Characters
Vocabulary Length = 40
'''


# Convert text to word vectors
s_text_ix = []
for x in char_list:
    try:
        s_text_ix.append(vocab2ix[x])
    except KeyError:
        s_text_ix.append(0)
s_text_ix = np.array(s_text_ix)


# Define LSTM RNN Model Class
class LSTM_Model():
    def __init__(self, rnn_size, num_layers, batch_size, learning_rate,
                 training_seq_len, vocab_size, infer_sample=False):
        self.rnn_size = rnn_size
        self.num_layers = num_layers
        self.vocab_size = vocab_size
        self.infer_sample = infer_sample
        self.learning_rate = learning_rate
        
        if infer_sample:
            self.batch_size = 1
            self.training_seq_len = 1
        else:
            self.batch_size = batch_size
            self.training_seq_len = training_seq_len
        
        self.lstm_cell = tf.contrib.rnn.BasicLSTMCell(rnn_size)
        self.lstm_cell = tf.contrib.rnn.MultiRNNCell([self.lstm_cell for _ in range(self.num_layers)]) '''新增'''
        self.initial_state = self.lstm_cell.zero_state(self.batch_size, tf.float32)
        
        self.x_data = tf.placeholder(tf.int32, [self.batch_size, self.training_seq_len])
        self.y_output = tf.placeholder(tf.int32, [self.batch_size, self.training_seq_len])
        
        with tf.variable_scope('lstm_vars'):
            # Softmax Output Weights
            W = tf.get_variable('W', [self.rnn_size, self.vocab_size], tf.float32, tf.random_normal_initializer())
            b = tf.get_variable('b', [self.vocab_size], tf.float32, tf.constant_initializer(0.0))
        
            # Define Embedding
            embedding_mat = tf.get_variable('embedding_mat', [self.vocab_size, self.rnn_size],
                                            tf.float32, tf.random_normal_initializer())
                                            
            embedding_output = tf.nn.embedding_lookup(embedding_mat, self.x_data)
            rnn_inputs = tf.split(axis=1, num_or_size_splits=self.training_seq_len, value=embedding_output)
            rnn_inputs_trimmed = [tf.squeeze(x, [1]) for x in rnn_inputs]
        
        decoder = tf.contrib.legacy_seq2seq.rnn_decoder
        outputs, last_state = decoder(rnn_inputs_trimmed,
                                      self.initial_state,
                                      self.lstm_cell)
        
        # RNN outputs
        output = tf.reshape(tf.concat(axis=1, values=outputs), [-1, rnn_size])
        # Logits and output
        self.logit_output = tf.matmul(output, W) + b
        self.model_output = tf.nn.softmax(self.logit_output)
        
        loss_fun = tf.contrib.legacy_seq2seq.sequence_loss_by_example
        loss = loss_fun([self.logit_output],[tf.reshape(self.y_output, [-1])],
                [tf.ones([self.batch_size * self.training_seq_len])],
                self.vocab_size)
        self.cost = tf.reduce_sum(loss) / (self.batch_size * self.training_seq_len)
        self.final_state = last_state
        gradients, _ = tf.clip_by_global_norm(tf.gradients(self.cost, tf.trainable_variables()), 4.5)
        optimizer = tf.train.AdamOptimizer(self.learning_rate)
        self.train_op = optimizer.apply_gradients(zip(gradients, tf.trainable_variables()))
        
    def sample(self, sess, words=ix2vocab, vocab=vocab2ix, num=20, prime_text='thou art'):
        state = sess.run(self.lstm_cell.zero_state(1, tf.float32))
        char_list = list(prime_text)
        for char in char_list[:-1]:
            x = np.zeros((1, 1))
            x[0, 0] = vocab[char]
            feed_dict = {self.x_data: x, self.initial_state:state}
            [state] = sess.run([self.final_state], feed_dict=feed_dict)

        out_sentence = prime_text
        char = char_list[-1]
        for n in range(num):
            x = np.zeros((1, 1))
            x[0, 0] = vocab[char]
            feed_dict = {self.x_data: x, self.initial_state:state}
            [model_output, state] = sess.run([self.model_output, self.final_state], feed_dict=feed_dict)
            sample = np.argmax(model_output[0])
            if sample == 0:
                break
            char = words[sample]
            out_sentence = out_sentence + char
        return out_sentence


'''Initialize the LSTM Model'''
# Define LSTM Model
lstm_model = LSTM_Model(rnn_size,
                        num_layers,
                        batch_size,
                        learning_rate,
                        training_seq_len,
                        vocab_size)

# Tell TensorFlow we are reusing the scope for the testing
with tf.variable_scope(tf.get_variable_scope(), reuse=True):
    test_lstm_model = LSTM_Model(rnn_size,
                                 num_layers,
                                 batch_size,
                                 learning_rate,
                                 training_seq_len,
                                 vocab_size,
                                 infer_sample=True)

# Create model saver
saver = tf.train.Saver(tf.global_variables())

# Create batches for each epoch
num_batches = int(len(s_text_ix)/(batch_size * training_seq_len)) + 1
# Split up text indices into subarrays, of equal size
batches = np.array_split(s_text_ix, num_batches)
# Reshape each split into [batch_size, training_seq_len]
batches = [np.resize(x, [batch_size, training_seq_len]) for x in batches]

# Initialize all variables
init = tf.global_variables_initializer()
sess.run(init)

# Train model
train_loss = []
iteration_count = 1
for epoch in range(epochs):
    # Shuffle word indices
    random.shuffle(batches)
    # Create targets from shuffled batches
    targets = [np.roll(x, -1, axis=1) for x in batches]
    # Run a through one epoch
    print('Starting Epoch #{} of {}.'.format(epoch+1, epochs))
    # Reset initial LSTM state every epoch
    state = sess.run(lstm_model.initial_state)
    for ix, batch in enumerate(batches):
        training_dict = {lstm_model.x_data: batch, lstm_model.y_output: targets[ix]}
        # We need to update initial state for each RNN cell:
        for i, (c, h) in enumerate(lstm_model.initial_state):
                    training_dict[c] = state[i].c
                    training_dict[h] = state[i].h
        
        temp_loss, state, _ = sess.run([lstm_model.cost, lstm_model.final_state, lstm_model.train_op],
                                       feed_dict=training_dict)
        train_loss.append(temp_loss)
        
        # Print status every 10 gens
        if iteration_count % 10 == 0:
            summary_nums = (iteration_count, epoch+1, ix+1, num_batches+1, temp_loss)
            print('Iteration: {}, Epoch: {}, Batch: {} out of {}, Loss: {:.2f}'.format(*summary_nums))
        
        # Save the model and the vocab
        if iteration_count % save_every == 0:
            # Save model
            model_file_name = os.path.join(full_model_dir, 'model')
            saver.save(sess, model_file_name, global_step=iteration_count)
            print('Model Saved To: {}'.format(model_file_name))
            # Save vocabulary
            dictionary_file = os.path.join(full_model_dir, 'vocab.pkl')
            with open(dictionary_file, 'wb') as dict_file_conn:
                pickle.dump([vocab2ix, ix2vocab], dict_file_conn)
        
        if iteration_count % eval_every == 0:
            for sample in prime_texts:
                print(test_lstm_model.sample(sess, ix2vocab, vocab2ix, num=10, prime_text=sample))
                
        iteration_count += 1


# Plot loss over time
plt.plot(train_loss, 'k-')
plt.title('Sequence to Sequence Loss')
plt.xlabel('Generation')
plt.ylabel('Loss')
plt.show()

 


(Placeholder)

你可能感兴趣的:(D-LEARNING,NOTEBOOK,SELF,机器学习)