tensorflow2.0学习笔记:wide and deep 模型

wide and deep 模型,谷歌16年发布,用于回归和分类。
稀疏特征:离散值–>One-hot编码,比如词表。可叉乘,类似笛卡尔乘积(组合)。
密集特征:向量表达,可计算距离。 Word2vec,带有语义信息,兼容没出现过的特征。

tensorflow2.0学习笔记:wide and deep 模型_第1张图片
wide model 与 deep model 的结合,从下(输入层)往上(输出层)看,左边输入通过wide model , 右边输入通过 deep model , 之后拼接,输出。左边可以输入密集特征,右边可以是稀疏特征,这也是wide and deep 的优势。

import matplotlib as mpl
import matplotlib.pyplot as plt
%matplotlib inline
import numpy as np
import sklearn
import pandas as pd
import os
import sys
import tensorflow as tf

from tensorflow import keras
print(tf.__version__)
2.0.0
from sklearn.datasets import fetch_california_housing
housing = fetch_california_housing()
# print(housing.DESCR)
# print(housing.data.shape)
# print(housing.target.shape)
from sklearn.model_selection import train_test_split

x_train_all, x_test, y_train_all, y_test = train_test_split(
    housing.data, housing.target, random_state = 7)
x_train, x_valid, y_train, y_valid, = train_test_split(
    x_train_all, y_train_all, random_state = 11)
print(x_train.shape, y_train.shape)
print(x_valid.shape, y_valid.shape)
print(x_test.shape, y_test.shape)
(11610, 8) (11610,)
(3870, 8) (3870,)
(5160, 8) (5160,)
from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()
x_train_scaled = scaler.fit_transform(x_train)
x_valid_scaled = scaler.transform(x_valid)
x_test_scaked = scaler.transform(x_test)
x_train.shape
(11610, 8)

wide and deep 模型的两种实现方式

  1. 函数式API
  2. 子类API

1. 函数式API实现


# wide and deep中间有连接的部分,Sequence不再适用了,使用函数式API
# 函数式API,就像一个复合函数:f(x) = h(g(x))
input = keras.layers.Input(shape=x_train.shape[1:])
hidden1 = keras.layers.Dense(30,activation='relu')(input)
hidden2 = keras.layers.Dense(30,activation='relu')(hidden1)

concat = keras.layers.concatenate([input,hidden2]) # 拼接,合并,输入和隐藏层
output = keras.layers.Dense(1)(concat)

model = keras.models.Model(inputs = [input],outputs = [output]) # 函数API,需要固化一个model

model.summary()
model.compile(loss="mean_squared_error", optimizer="adam")
callbacks = [keras.callbacks.EarlyStopping(
    patience=5, min_delta=1e-2)]

2. 子类API实现


# 使用子类API,定义个一个model,即通过承父类keras.models.Model,定义WideDeepModel子类。
class WideDeepModel(keras.models.Model):
    '''初始化函数(承载父类)'''
    def __init__(self):
        super(WideDeepModel,self).__init__()
        '''定义模型的层次'''
        self.hidden1_layer = keras.layers.Dense(30,activation='relu')
        self.hidden2_layer = keras.layers.Dense(30,activation='relu')
        self.output_layer = keras.layers.Dense(1)
        
    def call(self,input):
        '''完成模型的正向计算'''
        hidden1 = self.hidden1_layer(input)
        hidden2 = self.hidden2_layer(hidden1)
        concat = keras.layers.concatenate([input,hidden2])
        output = self.output_layer(concat)
        return output
    
#创建WideDeepModel对象
model = WideDeepModel()
model.build(input_shape=(None,8)) #调用build函数,建立模型


'''
# 除了使用创建对象,也可以使用Sequential,构建模型。
model = keras.models.Sequential([
    WideDeepModel(),
])
model.build(input_shape=(None,8))

'''

model.summary()
model.compile(loss="mean_squared_error", optimizer="adam")
callbacks = [keras.callbacks.EarlyStopping(
    patience=5, min_delta=1e-2)]
history = model.fit(x_train_scaled, y_train,
                   validation_data = (x_valid_scaled, y_valid),
                   epochs = 100,
                   callbacks = callbacks)
def plot_learning_curves(history):
    pd.DataFrame(history.history).plot(figsize=(8, 5))
    plt.grid(True)
    plt.gca().set_ylim(0, 1)
    plt.show()
plot_learning_curves(history)
model.evaluate(x_test_scaled,y_test)

你可能感兴趣的:(深度学习,tensorflow,神经网络,机器学习)