如何使用Caffe
Caffe教程(http://robots.princeton.edu/courses/COS598/2015sp/slides/Caffe/caffe_tutorial.pdf)
预备知识
Google Protocol Buffer
https://developers.google.com/protocol-buffers/docs/cpptutorial
Caffe数据的读取、运算、存储都是采用Google Protocol Buffer来进行的。PB是一种轻便、高效的结构化数据存储格式,可以用于结构化数据串行化,很适合做数据存储或 RPC 数据交换格式。它可用于通讯协议、数据存储等领域的语言无关、平台无关、可扩展的序列化结构数据格式。是一种效率和兼容性都很优秀的二进制数据传输格式,目前提供了 C++、Java、Python 三种语言的 API。Caffe采用的是C++和Python的API。
转载自https://github.com/shicai/Caffe_Manual/blob/master/ReadMe.md
初始化网络
#include "caffe/caffe.hpp"
#include
#include
using namespace caffe;
char *proto = "H:\\Models\\Caffe\\deploy.prototxt"; /* 加载CaffeNet的配置 */
Phase phase = TEST; /* or TRAIN */
Caffe::set_mode(Caffe::CPU);
// Caffe::set_mode(Caffe::GPU);
// Caffe::SetDevice(0);
//! Note: 后文所有提到的net,都是这个net
boost::shared_ptr< Net > net(new caffe::Net(proto, phase));
加载已训练好的模型
char *model = "H:\\Models\\Caffe\\bvlc_reference_caffenet.caffemodel";
net->CopyTrainedLayersFrom(model);
读取模型中的每层的结构配置参数
char *model = "H:\\Models\\Caffe\\bvlc_reference_caffenet.caffemodel";
NetParameter param;
ReadNetParamsFromBinaryFileOrDie(model, ¶m);
int num_layers = param.layer_size();
for (int i = 0; i < num_layers; ++i)
{
// 结构配置参数:name,type,kernel size,pad,stride等
LOG(ERROR) << "Layer " << i << ":" << param.layer(i).name() << "\t" << param.layer(i).type();
if (param.layer(i).type() == "Convolution")
{
ConvolutionParameter conv_param = param.layer(i).convolution_param();
LOG(ERROR) << "\t\tkernel size: " << conv_param.kernel_size()
<< ", pad: " << conv_param.pad()
<< ", stride: " << conv_param.stride();
}
}
读取图像均值
char *mean_file = "H:\\Models\\Caffe\\imagenet_mean.binaryproto";
Blob image_mean;
BlobProto blob_proto;
const float *mean_ptr;
unsigned int num_pixel;
bool succeed = ReadProtoFromBinaryFile(mean_file, &blob_proto);
if (succeed)
{
image_mean.FromProto(blob_proto);
num_pixel = image_mean.count(); /* NCHW=1x3x256x256=196608 */
mean_ptr = (const float *) image_mean.cpu_data();
}
根据指定数据,前向传播网络
//! Note: data_ptr指向已经处理好(去均值的,符合网络输入图像的长宽和Batch Size)的数据
void caffe_forward(boost::shared_ptr< Net > & net, float *data_ptr)
{
Blob* input_blobs = net->input_blobs()[0];
switch (Caffe::mode())
{
case Caffe::CPU:
memcpy(input_blobs->mutable_cpu_data(), data_ptr,
sizeof(float) * input_blobs->count());
break;
case Caffe::GPU:
cudaMemcpy(input_blobs->mutable_gpu_data(), data_ptr,
sizeof(float) * input_blobs->count(), cudaMemcpyHostToDevice);
break;
default:
LOG(FATAL) << "Unknown Caffe mode.";
}
net->ForwardPrefilled();
}
根据Feature层的名字获取其在网络中的Index
//! Note: Net的Blob是指,每个层的输出数据,即Feature Maps
// char *query_blob_name = "conv1";
unsigned int get_blob_index(boost::shared_ptr< Net > & net, char *query_blob_name)
{
std::string str_query(query_blob_name);
vector< string > const & blob_names = net->blob_names();
for( unsigned int i = 0; i != blob_names.size(); ++i )
{
if( str_query == blob_names[i] )
{
return i;
}
}
LOG(FATAL) << "Unknown blob name: " << str_query;
}
读取网络指定Feature层数据
//! Note: 根据CaffeNet的deploy.prototxt文件,该Net共有15个Blob,从data一直到prob
char *query_blob_name = "conv1"; /* data, conv1, pool1, norm1, fc6, prob, etc */
unsigned int blob_id = get_blob_index(net, query_blob_name);
boost::shared_ptr > blob = net->blobs()[blob_id];
unsigned int num_data = blob->count(); /* NCHW=10x96x55x55 */
const float *blob_ptr = (const float *) blob->cpu_data();
根据文件列表,获取特征,并存为二进制文件
详见get_features.cpp文件:
主要包括三个步骤
- 生成文件列表,格式与训练用的类似,每行一个图像
包括文件全路径、空格、标签(没有的话,可以置0) - 根据train_val或者deploy的prototxt,改写生成feat.prototxt
主要是将输入层改为image_data层,最后加上prob和argmax(为了输出概率和Top1/5预测标签) - 根据指定参数,运行程序后会生成若干个二进制文件,可以用MATLAB读取数据,进行分析
根据Layer的名字获取其在网络中的Index
//! Note: Layer包括神经网络所有层,比如,CaffeNet共有23层
// char *query_layer_name = "conv1";
unsigned int get_layer_index(boost::shared_ptr< Net > & net, char *query_layer_name)
{
std::string str_query(query_layer_name);
vector< string > const & layer_names = net->layer_names();
for( unsigned int i = 0; i != layer_names.size(); ++i )
{
if( str_query == layer_names[i] )
{
return i;
}
}
LOG(FATAL) << "Unknown layer name: " << str_query;
}
读取指定Layer的权重数据
//! Note: 不同于Net的Blob是Feature Maps,Layer的Blob是指Conv和FC等层的Weight和Bias
char *query_layer_name = "conv1";
const float *weight_ptr, *bias_ptr;
unsigned int layer_id = get_layer_index(net, query_layer_name);
boost::shared_ptr > layer = net->layers()[layer_id];
std::vector >> blobs = layer->blobs();
if (blobs.size() > 0)
{
weight_ptr = (const float *) blobs[0]->cpu_data();
bias_ptr = (const float *) blobs[1]->cpu_data();
}
//! Note: 训练模式下,读取指定Layer的梯度数据,与此相似,唯一的区别是将cpu_data改为cpu_diff
修改某层的Weight数据
const float* data_ptr; /* 指向待写入数据的指针, 源数据指针*/
float* weight_ptr = NULL; /* 指向网络中某层权重的指针,目标数据指针*/
unsigned int data_size; /* 待写入的数据量 */
char *layer_name = "conv1"; /* 需要修改的Layer名字 */
unsigned int layer_id = get_layer_index(net, query_layer_name);
boost::shared_ptr > blob = net->layers()[layer_id]->blobs()[0];
CHECK(data_size == blob->count());
switch (Caffe::mode())
{
case Caffe::CPU:
weight_ptr = blob->mutable_cpu_data();
break;
case Caffe::GPU:
weight_ptr = blob->mutable_gpu_data();
break;
default:
LOG(FATAL) << "Unknown Caffe mode";
}
caffe_copy(blob->count(), data_ptr, weight_ptr);
//! Note: 训练模式下,手动修改指定Layer的梯度数据,与此相似
// mutable_cpu_data改为mutable_cpu_diff,mutable_gpu_data改为mutable_gpu_diff
保存新的模型
char* weights_file = "bvlc_reference_caffenet_new.caffemodel";
NetParameter net_param;
net->ToProto(&net_param, false);
WriteProtoToBinaryFile(net_param, weights_file);
Caffe中添加新的层
https://github.com/BVLC/caffe/wiki/Development
用预训练网络参数初始化
caffe的参数初始化是根据名字从caffemodel读取的,只要修改名字,自己想要修改的层就能随机初始化。
- 修改名字,保留前面几层的参数,同时后面的参数设置较高的学习率,基础学习率大概0.00001左右。