Ker(A)——矩阵kernel

根据维基百科定义,kernel在线性代数和泛函分析中的定义为:
线性映射 L : V ↦ W L:V\mapsto W L:VW,V和W为两个向量空间,满足 L ( v ⃗ ) = 0 ⃗ L(\vec{v})=\vec{0} L(v )=0 的所有元素 v ⃗ \vec{v} v 组成的空间,称为kernel或nullspace。
数学表示为:
k e r ( L ) = { v ⃗ ∈ V ∣ L ( v ⃗ ) = 0 } ker(L)=\{\vec{v}\in V|L(\vec{v})=0\} ker(L)={v VL(v )=0}
Ker(A)——矩阵kernel_第1张图片
如上图所示,当两个不同的元素 v 1 ⃗ , v 2 ⃗ \vec{v_1},\vec{v_2} v1 ,v2 具有相同的image(W空间黄色区域内)时,则意味着 v 1 ⃗ − v 2 ⃗ \vec{v_1}-\vec{v_2} v1 v2 在L的kernel空间内:
L ( v 1 ⃗ ) = L ( v 2 ⃗ ) ⇔ L ( v 1 ⃗ − v 2 ⃗ ) = 0 ⃗ L(\vec{v_1})=L(\vec{v_2})\Leftrightarrow L(\vec{v_1}-\vec{v_2})=\vec{0} L(v1 )=L(v2 )L(v1 v2 )=0

看上图的黄色区域即左侧为源,右侧的黄色区域即为L的像。
左侧V源的Ker(L)的所有源都映射到右侧的0(向量)点。左侧V源除Ker(L)外的所有源点通过L都将映射到右侧的im(L)空间内,于是有:
i m ( L ) ≅ V / k e r ( L ) im(L)\cong V/ker(L) im(L)V/ker(L)
【In linear algebra, the quotient of a vector space V by a subspace N is a vector space obtained by “collapsing” N to zero. The space obtained is called a quotient space and is denoted V/N (read V mod N or V by N).】

根据rank-nullity定理
Ker(A)——矩阵kernel_第2张图片
相应地有:dim(ker(L))+dim(im(L))=dim(V)。

举例如下:
Ker(A)——矩阵kernel_第3张图片

参考资料:
[1] https://en.wikipedia.org/wiki/Kernel_(linear_algebra)
[2] https://en.wikipedia.org/wiki/Rank%E2%80%93nullity_theorem
[3] https://en.wikipedia.org/wiki/Quotient_space_(linear_algebra)

你可能感兴趣的:(基础理论)