CodeChef - CODIE

%%%

参考自:yts1999’s blog

题目链接 : Codie Bird

sol:

  1. 考虑朴素的 d p dp dp方程

d p [ i ] [ j ] = d p [ i − 1 ] [ j − 1 ] + d p [ i − 1 ] [ j ] + d p [ i ] [ j + 1 ] dp[i][j] = dp[i-1][j-1]+dp[i-1][j]+dp[i][j+1] dp[i][j]=dp[i1][j1]+dp[i1][j]+dp[i][j+1]

递推矩阵大概长这样。
T = [ 1 1 0 0 0 0 … 0 0 1 1 1 0 0 0 … 0 0 0 1 1 1 0 0 … 0 0 … … … … … … … … … 0 0 0 0 0 0 … 1 1 ] T=\begin{bmatrix} 1 & 1 & 0 & 0 & 0 & 0 & \dots & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & \dots & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & 0 & 0 & 0 & \dots & 1 & 1\\ \end{bmatrix} T=11001110011000100000000000010001

有障碍的时候,将 [ 1 , a ] [1,a] [1,a] [ b , m ] [b,m] [b,m]列的矩阵元素全部置为0。将这个转移矩阵设为 S S S.
v i = [ d p [ i ] [ 1 ] d p [ i ] [ 2 ] ⋯ d p [ i ] [ k ] ] v_i=\begin{bmatrix} dp[i][1] & dp[i][2] & \cdots & dp[i][k]\end{bmatrix} vi=[dp[i][1]dp[i][2]dp[i][k]],则 v n = v 1 ( ∑ i = 1 n − 2 T i − 1 S T n − 2 − i ) T v_n=v_1(\sum\limits_{i=1}^{n-2}T^{i-1}ST^{n-2-i})T vn=v1(i=1n2Ti1STn2i)T
P n = ∑ i = 1 n T i − 1 S T n − i P_n = \sum\limits_{i=1}^{n} T^{i-1}ST^{n-i} Pn=i=1nTi1STni,则 v n = v 1 P n − 2 T v_n = v_1P_{n-2}T vn=v1Pn2T
实现上可以用单位矩阵代替 v 1 v_1 v1 v n v_n vn就是最终矩阵的第 k 2 \frac{k}{2} 2k行。

  1. P n P_n Pn可以用类似倍增的做法。

P 1 = S P_1 = S P1=S
若n为偶数, P n = P n 2 ⋅ T n 2 + T n 2 ⋅ P n 2 P_n = P_\frac{n}{2} \cdot T^\frac{n}{2} + T^\frac{n}{2} \cdot P_\frac{n}{2} Pn=P2nT2n+T2nP2n
若n为奇数, P n = P n − 1 ⋅ T + T n − 1 ⋅ S P_n = P_{n-1} \cdot T + T^{n-1} \cdot S Pn=Pn1T+Tn1S

实现上可以考虑 101 0 ( 2 ) = 1 0 ( 10 ) 1010_{(2)} = 10_{(10)} 1010(2)=10(10)这样的求解过程。

code:

#include
#include
#include
#include
#include

using namespace std;
typedef long long ll;
const int maxn = 52;
const int mod = 1e9+7;
int n,m;

struct Mat{
    ll a[maxn][maxn];
    void init(int k){
        memset(a,0,sizeof(a));
        for(int i = 1;i<=k;i++) a[i][i] = 1;
    }

    void reset(){
        memset(a,0,sizeof(a));
    }

    Mat operator + (Mat b){
        Mat c;
        c.reset();
        for(int i = 1;i<=m;i++)
        for(int j = 1;j<=m;j++)
            c.a[i][j] = (a[i][j] + b.a[i][j]) % mod;
        return c;
    }

    Mat operator * (Mat b){
        Mat c; 
        for(int i = 1;i<=m;i++)
        for(int j = 1;j<=m;j++){
            c.a[i][j] = 0;
            for(int k = 1;k<=m;k++){
                c.a[i][j] += a[i][k] * b.a[k][j] % mod;
            }
            c.a[i][j] %= mod;
        }
        return c;
    }

    Mat pow(int b){
        Mat ret; ret.init(m);
        Mat a = (*this);
        while(b){
            if(b&1) ret = ret * a;
            a = a * a;
            b>>=1;
        }
        return ret;
    }
};

ll qpow(ll a,int b){
    ll ret = 1;
    while(b){
        if(b&1) ret = ret * a % mod;
        a = a*a % mod;
        b>>=1;
    }
    return ret;
}

int main(){
    int a,b;
    scanf("%d%d%d%d",&n,&m,&a,&b);
    n -= 2;
    Mat T,S;
    T.reset(); S.reset();
    for(int i = 1;i<=m;i++) 
        T.a[i][i] = T.a[i][i-1] = T.a[i][i+1] = 1;
    
    S = T;
    for(int i = 1;i<=m;i++){
        if(i<=a || i>=b){
            for(int j = 1;j<=m;j++){
                S.a[j][i] = 0;
            }
        }
    }
    
    int bit = 0;
    for(int i = n;i>0;i>>=1) bit++;
    Mat P = S; Mat Ts = T;
    for(int i = bit - 2;i>=0;i--){
        P = P * Ts + Ts * P;
        Ts = Ts * Ts;
        if((n>>i)&1){
            P = P * T + Ts * S;
            Ts = Ts * T;
        }
    }
    P = P * T;
    ll ans = P.a[m/2][m/2];
    ans = ans * qpow(n,mod-2) % mod;
    printf("%lld\n",ans);
    return 0;
}

你可能感兴趣的:(矩阵快速幂,DP)