粒子滤波 演示与opencv代码

粒子滤波的理论实在是太美妙了,用一组不同权重的随机状态来逼近复杂的概率密度函数。其再非线性、非高斯系统中具有优良的特性。opencv给出了一个实现,但是没有给出范例,学习过程中发现网络上也找不到。learning opencv一书中有介绍,但距离直接使用还是有些距离。在经过一番坎坷后,终于可以用了,希望对你有帮助。

 

 本文中给出的例子跟 我的另一篇博文是同一个应用例子,都是对二维坐标进行平滑、预测

使用方法:


1.创建并初始化

const int stateNum=4;//状态数
 const int measureNum=2;//测量变量数
 const int sampleNum=2000;//粒子数

 CvConDensation* condens = cvCreateConDensation(stateNum,measureNum,sampleNum);

在不影响性能的情况下,粒子数量越大,系统表现的越稳定

其他初始化内容请参考learning opencv


2.预测
3.更新例子可信度,也就是权重。本例中更新方法与learning opencv中有所不同,想看代码
4.更新CvConDensation

 

代码:

#include #include #include #include #include #include #include using namespace std; const int winHeight=600; const int winWidth=800; CvPoint mousePosition=cvPoint(winWidth>>1,winHeight>>1); //mouse event callback void mouseEvent(int event,int x,int y,int flags,void *param ) { if (event==CV_EVENT_MOUSEMOVE) { mousePosition=cvPoint(x,y); } } int main (void) { //1.condensation setup const int stateNum=4; const int measureNum=2; const int sampleNum=2000; CvConDensation* condens = cvCreateConDensation(stateNum,measureNum,sampleNum); CvMat* lowerBound; CvMat* upperBound; lowerBound = cvCreateMat(stateNum, 1, CV_32F); upperBound = cvCreateMat(stateNum, 1, CV_32F); cvmSet(lowerBound,0,0,0.0 ); cvmSet(upperBound,0,0,winWidth ); cvmSet(lowerBound,1,0,0.0 ); cvmSet(upperBound,1,0,winHeight ); cvmSet(lowerBound,2,0,0.0 ); cvmSet(upperBound,2,0,0.0 ); cvmSet(lowerBound,3,0,0.0 ); cvmSet(upperBound,3,0,0.0 ); float A[stateNum][stateNum] ={ 1,0,1,0, 0,1,0,1, 0,0,1,0, 0,0,0,1 }; memcpy(condens->DynamMatr,A,sizeof(A)); cvConDensInitSampleSet(condens, lowerBound, upperBound); CvRNG rng_state = cvRNG(0xffffffff); for(int i=0; i < sampleNum; i++){ condens->flSamples[i][0] = float(cvRandInt( &rng_state ) % winWidth); //width condens->flSamples[i][1] = float(cvRandInt( &rng_state ) % winHeight);//height } CvFont font; cvInitFont(&font,CV_FONT_HERSHEY_SCRIPT_COMPLEX,1,1); char* winName="condensation"; cvNamedWindow(winName); cvSetMouseCallback(winName,mouseEvent); IplImage* img=cvCreateImage(cvSize(winWidth,winHeight),8,3); bool isPredictOnly=false;//trigger for prediction only,press SPACEBAR while (1){ //2.condensation prediction CvPoint predict_pt=cvPoint((int)condens->State[0],(int)condens->State[1]); float variance[measureNum]={0}; //get variance/standard deviation of each state for (int i=0;iSamplesNum;j++) { sumState+=condens->flSamples[i][j]; } //average sumState/=sampleNum; //variance for (int j=0;jSamplesNum;j++) { variance[i]+=(condens->flSamples[i][j]-sumState)* (condens->flSamples[i][j]-sumState); } variance[i]/=sampleNum-1; } //3.update particals confidence CvPoint pt; if (isPredictOnly) { pt=predict_pt; }else{ pt=mousePosition; } for (int i=0;iSamplesNum;i++) { float probX=(float)exp(-1*(pt.x-condens->flSamples[i][0]) *(pt.x-condens->flSamples[i][0])/(2*variance[0])); float probY=(float)exp(-1*(pt.y-condens->flSamples[i][1]) *(pt.y-condens->flSamples[i][1])/(2*variance[1])); condens->flConfidence[i]=probX*probY; } //4.update condensation cvConDensUpdateByTime(condens); //draw cvSet(img,cvScalar(255,255,255,0)); cvCircle(img,predict_pt,5,CV_RGB(0,255,0),3);//predicted point with green char buf[256]; sprintf_s(buf,256,"predicted position:(%3d,%3d)",predict_pt.x,predict_pt.y); cvPutText(img,buf,cvPoint(10,30),&font,CV_RGB(0,0,0)); if (!isPredictOnly) { cvCircle(img,mousePosition,5,CV_RGB(255,0,0),3);//current position with red sprintf_s(buf,256,"real position :(%3d,%3d)",mousePosition.x,mousePosition.y); cvPutText(img,buf,cvPoint(10,60),&font,CV_RGB(0,0,0)); } cvShowImage(winName, img); int key=cvWaitKey(30); if (key==27){//esc break; }else if (key==' ') {//trigger for prediction //isPredict=!isPredict; if (isPredictOnly) { isPredictOnly=false; }else{ isPredictOnly=true; } } } cvReleaseImage(&img); cvReleaseConDensation(&condens); return 0; }

 

kalman filter 视频演示:

演示中粒子数分别为100,200,2000

请仔细观测效果

http://v.youku.com/v_show/id_XMjU4MzE0ODgw.html

demo snapshot:

你可能感兴趣的:(computer,vision)