1、两数之和
2、三数之和
LeetCode 链接:
第1题:https://leetcode-cn.com/problems/two-sum/
第15题:https://leetcode-cn.com/problems/3sum/
暴力解:
两次 for 循环,时间复杂度为:O(N)。
两遍哈希表:
为了对运行时间复杂度进行优化,我们需要一种更有效的方法来检查数组中是否存在目标元素。如果存在,我们需要找出它的索引。保持数组中的每个元素与其索引相互对应的最好方法是什么?哈希表。
通过以空间换取速度的方式,我们可以将查找时间从 O(n) 降低到 O(1)。哈希表正是为此目的而构建的,它支持以近似 恒定的时间进行快速查找。我用“近似”来描述,是因为一旦出现冲突,查找用时可能会退化到 O(n)。但只要你仔细地挑选哈希函数,在哈希表中进行查找的用时应当被摊销为 O(1)。
一个简单的实现使用了两次迭代。在第一次迭代中,我们将每个元素的值和它的索引添加到哈希表中。然后,在第二次迭代中,我们将检查每个元素所对应的目标元素(target - nums[i])是否存在于表中。注意,该目标元素不能是 nums[i] 本身。
public class TwoSum_1 {
public int[] twoSum(int[] nums, int target) {
if(nums == null || nums.length < 1){
return null;
}
HashMap map = new HashMap<>();
for(int i = 0; i < nums.length; i++){
map.put(nums[i], i);
}
for(int i = 0; i < nums.length; i++){
int count = target - nums[i];
if(map.containsKey(count) && map.get(count) != i){
return new int[] {map.get(count), i};
}
}
return null;
}
}
暴力解:
三层 for 循环,时间复杂度:O(N^3)
双指针:
1、先将给定 nums 数组排序,简化问题,复杂度为:O(NlogN)。
2、令 nums[k] + nums[i] + nums[j] == 0,找所有的组合的思路是:遍历三个数字中最左数字的指针 k,找到数组中所有不重复 k 对应所有 i、j 组合,即每指向新的 nums[k],都通过双指针法找到所有和为 0 的 nums[i]、nums[j] 并记录:
3、当 nums[k] > 0 时,直接跳出,因为 j > i > k,所有数字大于 0,以后不可能找到组合了;
4、当 k > 0 and nums[k] == nums[k - 1],跳过此数字,因为 nums[k - 1] 的所有组合已经被加入到结果,如果本次搜索,只会搜索到重复组合;
5、i、j 分设在 [k, len(nums)] 两端,根据 sum 与 0 的大小关系交替向中间逼近,如果遇到等于 0 的组合则加入 res 中,需要注意:移动 i、j 需要跳过所有重复值,否则重复答案会被计入 res。
整体算法复杂度O(N^2)。
public class ThreeSum_15 {
public List> threeSum(int[] nums){
List> res = new ArrayList<>();
if(nums == null || nums.length < 1){
return res;
}
// 排序
Arrays.sort(nums);
for(int k = 0; k < nums.length; k++){
if(nums[0] > 0){
// 如果排序后的数组第1个值就大于0,大肯定不存在三数和等于0的,直接返回
break;
}
if(k > 0 && nums[k] == nums[k - 1]){
continue;
}
int i = k + 1;
int j = nums.length - 1;
while(i < j){
if(j < nums.length - 1 && nums[j] == nums[j + 1] || nums[k] + nums[i] + nums[j] > 0){
j--;
}else if(i > k + 1 && nums[i] == nums[i - 1] || nums[k] + nums[i] + nums[j] < 0){
i++;
}else{
List list = new ArrayList<>(Arrays.asList(nums[k],nums[i++],nums[j--]));
res.add(list);
}
}
}
return res;
}
}