elastic-job作业相关的数据都是配置在zk上的,包括分片参数,作业失效转移,运行实例等等都是保存在ZK上的,那具体的zk节点的树形结构会是什么样子?每一个节点又是什么时候注册到zk上的?
在job的启动过程中(JobScheduler.init()),会将启动信息注册到注册中心,再看一下具体的节点信息:
public void init() {
///{jobName}/config路径在这里
LiteJobConfiguration liteJobConfigFromRegCenter =
schedulerFacade.updateJobConfiguration(liteJobConfig); JobRegistry.getInstance().setCurrentShardingTotalCount(liteJobConfigFromRegCenter.getJobName(), liteJobConfigFromRegCenter.getTypeConfig().getCoreConfig().getShardingTotalCount());
JobScheduleController jobScheduleController = new JobScheduleController(
createScheduler(), createJobDetail(liteJobConfigFromRegCenter.getTypeConfig().getJobClass()), liteJobConfigFromRegCenter.getJobName());
JobRegistry.getInstance().registerJob(liteJobConfigFromRegCenter.getJobName(), jobScheduleController, regCenter);
/**
/{jobName}/leader/election/latch
/leader/election/instance
/{jobName}/services/{ServerIp}
/{jobName}/instances/{instanceIndex}
/{jobName}/sharding/necessary
**/
schedulerFacade.registerStartUpInfo(!liteJobConfigFromRegCenter.isDisabled());
jobScheduleController.scheduleJob(liteJobConfigFromRegCenter.getTypeConfig().getCoreConfig().getCron());
}
持久化job的配置信息,首先将job的配置信息持久到zk节点上,看代码:
LiteJobConfiguration liteJobConfigFromRegCenter=schedulerFacade.updateJobConfiguration(liteJobConfig);
public LiteJobConfiguration updateJobConfiguration(final LiteJobConfiguration liteJobConfig) {
configService.persist(liteJobConfig);//
return configService.load(false);
}
public void persist(final LiteJobConfiguration liteJobConfig) {
checkConflictJob(liteJobConfig);
//configurationNode.ROOT=/{jobName}/config
if (!jobNodeStorage.isJobNodeExisted(ConfigurationNode.ROOT) || liteJobConfig.isOverwrite()) {
jobNodeStorage.replaceJobNode(ConfigurationNode.ROOT, LiteJobConfigurationGsonFactory.toJson(liteJobConfig));
}
}
public void replaceJobNode(final String node, final Object value) {
/**
节点:
/{jobName}/config
在这里注册
**/
regCenter.persist(jobNodePath.getFullPath(node), value.toString());
}
在job启动注册启动信息的时候,会注册很多信息,具体如下:
//JobScheduler.init();
schedulerFacade.registerStartUpInfo(!liteJobConfigFromRegCenter.isDisabled());
public void registerStartUpInfo(final boolean enabled) {
listenerManager.startAllListeners();
/**
节点:
/{jobName}/leader/election/latch
/{jobName}/leader/election/instance
在这里实现
**/
leaderService.electLeader();
/**
节点:
/{jobName}/servers/{ServerIp}
在这里创建
**/
serverService.persistOnline(enabled);
/**
节点:
/{jobName}/instances/{instanceId}
在这里创建
**/
instanceService.persistOnline();
/**
节点:
/{jobName}/sharding/necessary
在这里创建
**/
shardingService.setReshardingFlag();
monitorService.listen();
if (!reconcileService.isRunning()) {
reconcileService.startAsync();
}
}
public void electLeader() {
log.debug("Elect a new leader now.");
//
//选举主节点 在主节点下面创建节点LeaderNode.LATCH=/{jobName}/leader/election/latch
jobNodeStorage.executeInLeader(LeaderNode.LATCH, new LeaderElectionExecutionCallback());
log.debug("Leader election completed.");
}
public void executeInLeader(final String latchNode, final LeaderExecutionCallback callback) {
//
try (LeaderLatch latch = new LeaderLatch(getClient(), jobNodePath.getFullPath(latchNode))) {
latch.start();
latch.await();
//回调,注册主节点
callback.execute();
//CHECKSTYLE:OFF
} catch (final Exception ex) {
//CHECKSTYLE:ON
handleException(ex);
}
}
//在主节点选举完成之后,执行callBack
@RequiredArgsConstructor
class LeaderElectionExecutionCallback implements LeaderExecutionCallback {
@Override
public void execute() {
if (!hasLeader()) {
///{jobName}/leader/election/instance 在这里
jobNodeStorage.fillEphemeralJobNode(LeaderNode.INSTANCE, JobRegistry.getInstance().getJobInstance(jobName).getJobInstanceId());
}
}
}
再看一下执行过程,最重要的一段获取分片上下文,在获取分片上下文的时候,首先会判断是不是需要重新分片,需要分片的话,重新设置分片信息,在这里会做所有相关分片的逻辑。
//AbstractElasticJobExecutor 获取上下文
ShardingContexts shardingContexts = jobFacade.getShardingContexts();
public ShardingContexts getShardingContexts() {
boolean isFailover = configService.load(true).isFailover();
if (isFailover) {
List failoverShardingItems = failoverService.getLocalFailoverItems();
if (!failoverShardingItems.isEmpty()) {
return executionContextService.getJobShardingContext(failoverShardingItems);
}
}
//如果需要分片,则重新分片
shardingService.shardingIfNecessary();
List shardingItems = shardingService.getLocalShardingItems();
if (isFailover) {
shardingItems.removeAll(failoverService.getLocalTakeOffItems());
}
shardingItems.removeAll(executionService.getDisabledItems(shardingItems));
return executionContextService.getJobShardingContext(shardingItems);
}
//分片代码
public void shardingIfNecessary() {
List availableJobInstances = instanceService.getAvailableJobInstances();
if (!isNeedSharding() || availableJobInstances.isEmpty()) {
return;
}
if (!leaderService.isLeaderUntilBlock()) {
blockUntilShardingCompleted();
return;
}
waitingOtherJobCompleted();
LiteJobConfiguration liteJobConfig = configService.load(false);
int shardingTotalCount = liteJobConfig.getTypeConfig().getCoreConfig().getShardingTotalCount();
log.debug("Job '{}' sharding begin.", jobName);
//分片之前,将zk节点状态改为processing,分片中的状态,等待分片结束
/**
/{jobName}/sharding/processing
**/
jobNodeStorage.fillEphemeralJobNode(ShardingNode.PROCESSING, "");
//重新设置分片项参数
resetShardingInfo(shardingTotalCount);
//获取分片策略类
JobShardingStrategy jobShardingStrategy = JobShardingStrategyFactory.getStrategy(liteJobConfig.getJobShardingStrategyClass());
///分片
jobNodeStorage.executeInTransaction(new PersistShardingInfoTransactionExecutionCallback(jobShardingStrategy.sharding(availableJobInstances, jobName, shardingTotalCount)));
log.debug("Job '{}' sharding complete.", jobName);
}
/**
重新设子分片信息
**/
private void resetShardingInfo(final int shardingTotalCount) {
for (int i = 0; i < shardingTotalCount; i++) {
/** 删除jobInstance节点
/{jobName}/sharing/{instanceIndex}分片项节点删除
**/
jobNodeStorage.removeJobNodeIfExisted(ShardingNode.getInstanceNode(i));
/** 删除jobInstance节点
/{jobName}/sharing/{instanceIndex}重新设置分片项
**/
jobNodeStorage.createJobNodeIfNeeded(ShardingNode.ROOT + "/" + i);
}
int actualShardingTotalCount = jobNodeStorage.getJobNodeChildrenKeys(ShardingNode.ROOT).size();
if (actualShardingTotalCount > shardingTotalCount) {
for (int i = shardingTotalCount; i < actualShardingTotalCount; i++) {
//有多余分片删除
jobNodeStorage.removeJobNodeIfExisted(ShardingNode.ROOT + "/" + i);
}
}
}
/** 分片 **/
@RequiredArgsConstructor
class PersistShardingInfoTransactionExecutionCallback implements TransactionExecutionCallback {
private final Map> shardingResults;
@Override
public void execute(final CuratorTransactionFinal curatorTransactionFinal) throws Exception {
for (Map.Entry> entry : shardingResults.entrySet()) {
for (int shardingItem : entry.getValue()) {
/**
每个分片项创建一个实例
{jobName}/sharing/{instanceIndex}/
**/
curatorTransactionFinal.create().forPath(jobNodePath.getFullPath(ShardingNode.getInstanceNode(shardingItem)), entry.getKey().getJobInstanceId().getBytes()).and();
}
}
/**
删除节点
/{jobName}/sharding/necessary
/{jobName}/sharding/processing
**/ curatorTransactionFinal.delete().forPath(jobNodePath.getFullPath(ShardingNode.NECESSARY)).and(); curatorTransactionFinal.delete().forPath(jobNodePath.getFullPath(ShardingNode.PROCESSING)).and();
}
}
在获取分片上下文后,根据每个分片项判断有无作业是运行中的状态,如果有,则标记为misfire
jobFacade.misfireIfRunning(shardingContexts.getShardingItemParameters().keySet())
public boolean misfireIfRunning(final Collection shardingItems) {
return executionService.misfireIfHasRunningItems(shardingItems);
}
/**
* 如果当前分片项仍在运行则设置任务被错过执行的标记.
*
* @param items 需要设置错过执行的任务分片项
* @return 是否错过本次执行
*/
public boolean misfireIfHasRunningItems(final Collection items) {
if (!hasRunningItems(items)) {
return false;
}
setMisfire(items);
return true;
}
/**
* 设置任务被错过执行的标记.
*
* @param items 需要设置错过执行的任务分片项
*/
public void setMisfire(final Collection items) {
for (int each : items) {
/**
/{jobName}/{itemNum}/misfire
**/
jobNodeStorage.createJobNodeIfNeeded(ShardingNode.getMisfireNode(each));
}
}
misfire判断结束之后,回去执行job,执行开始时,会将作业状态改为running状态,作业执行完成,将running节点删除。
private void execute(final ShardingContexts shardingContexts, final JobExecutionEvent.ExecutionSource executionSource) {
if (shardingContexts.getShardingItemParameters().isEmpty()) {
if (shardingContexts.isAllowSendJobEvent()) {
jobFacade.postJobStatusTraceEvent(shardingContexts.getTaskId(), State.TASK_FINISHED, String.format("Sharding item for job '%s' is empty.", jobName));
}
return;
}
/**这里修改作业状态
{jobName}/{itemNum}/running
**/
jobFacade.registerJobBegin(shardingContexts);
String taskId = shardingContexts.getTaskId();
if (shardingContexts.isAllowSendJobEvent()) {
jobFacade.postJobStatusTraceEvent(taskId, State.TASK_RUNNING, "");
}
try {
// failOver逻辑在这里
process(shardingContexts, executionSource);
} finally {
// TODO 考虑增加作业失败的状态,并且考虑如何处理作业失败的整体回路
// 删除running节点
//{jobName}/{itemNum}/running
jobFacade.registerJobCompleted(shardingContexts);
if (itemErrorMessages.isEmpty()) {
if (shardingContexts.isAllowSendJobEvent()) {
jobFacade.postJobStatusTraceEvent(taskId, State.TASK_FINISHED, "");
}
} else {
if (shardingContexts.isAllowSendJobEvent()) {
jobFacade.postJobStatusTraceEvent(taskId, State.TASK_ERROR, itemErrorMessages.toString());
}
}
}
}
/**
* 注册作业启动信息.
*
* @param shardingContexts 分片上下文
*/
public void registerJobBegin(final ShardingContexts shardingContexts) {
JobRegistry.getInstance().setJobRunning(jobName, true);
if (!configService.load(true).isMonitorExecution()) {
return;
}
for (int each : shardingContexts.getShardingItemParameters().keySet()) {
/**这里修改作业状态
{jobName}/{itemNum}/running
**/
jobNodeStorage.fillEphemeralJobNode(ShardingNode.getRunningNode(each), "");
}
}
/**
* 注册作业完成信息.
*
* @param shardingContexts 分片上下文
*/
public void registerJobCompleted(final ShardingContexts shardingContexts) {
JobRegistry.getInstance().setJobRunning(jobName, false);
if (!configService.load(true).isMonitorExecution()) {
return;
}
for (int each : shardingContexts.getShardingItemParameters().keySet()) {
/**在这里删除节点
{jobName}/{itemNum}/running
**/
jobNodeStorage.removeJobNodeIfExisted(ShardingNode.getRunningNode(each));
}
}