若该文为原创文章,未经允许不得转载
原博主博客地址:https://blog.csdn.net/qq21497936
原博主博客导航:https://blog.csdn.net/qq21497936/article/details/102478062
本文章博客地址:https://blog.csdn.net/qq21497936/article/details/106367317
各位读者,知识无穷而人力有穷,要么改需求,要么找专业人士,要么自己研究
红胖子(红模仿)的博文大全:开发技术集合(包含Qt实用技术、树莓派、三维、OpenCV、OpenGL、ffmpeg、OSG、单片机、软硬结合等等)持续更新中…(点击传送门)
上一篇:《OpenCV开发笔记(五十九):红胖子8分钟带你深入了解分水岭算法(图文并茂+浅显易懂+程序源码)》
下一篇:《OpenCV开发笔记(六十一):红胖子8分钟带你深入了解Shi-Tomasi角点检测(图文并茂+浅显易懂+程序源码)》
红胖子,来也!
做识别,有时候遇到需求,比如识别一个三角形,并求得三角形三个顶点的角度,这种属于教育场景类似的,还有其他场景,那么检测角点就显得很重要了,检测出角点并且求出其角度。
Harris角点检测是一种基于灰度图像的角点提取算法,稳定性高,在opencv中harris角点检测的性能相对较低,因为其使用了高斯滤波。
基于灰度图像的角点检测又分为基于梯度、基于模板和基于模板梯度组合三类型的方法,而Harris算法就是基于灰度图像中的基于模板类型的算法。
人眼对角点的识别通常是通过一个局部的小窗口内完成的:如果在各个方向上移动这个小窗口,窗口内的灰度发生了较大的变化,那么说明窗口内存在角点,具体分为以下三种情况:
void cornerHarris(InputArray src,
OutputArray dst,
int blockSize,
int ksize,
double k,
intborderType=BORDER_DEFAULT );
归一化是指对矩阵cv::Mat进行归一化操作。
归一化是一种无量纲处理手段,使物理系统数值的绝对值变成某种相对值关系。简化计算,缩小量值的有效办法。例如,滤波器中各个频率值以截止频率作归一化后,频率都是截止频率的相对值,没有了量纲。阻抗以电源内阻作归一化后,各个阻抗都成了一种相对阻抗值,“欧姆”这个量纲也没有了。等各种运算都结束后,反归一化一切都复原了。信号处理工具箱中经常使用的是nyquist频率,它被定义为采样频率的二分之一,在滤波器的阶数选择和设计中的截止频率均使用nyquist频率进行归一化处理。例如对于一个采样频率为500hz的系统,400hz的归一化频率就为400/500=0.8,归一化频率范围在[0,1]之间。
void normalize( InputArray src,
InputOutputArray dst,
double alpha = 1,
double beta = 0,
int norm_type = NORM_L2,
int dtype = -1,
InputArray mask = noArray());
void convertScaleAbs(InputArray src,
OutputArray dst,
double alpha = 1,
double beta = 0);
void OpenCVManager::testHarris()
{
QString fileName1 =
"E:/qtProject/openCVDemo/openCVDemo/modules/openCVManager/images/16.jpg";
int width = 400;
int height = 300;
cv::Mat srcMat = cv::imread(fileName1.toStdString());
cv::resize(srcMat, srcMat, cv::Size(width, height));
cv::String windowName = _windowTitle.toStdString();
cvui::init(windowName);
cv::Mat windowMat = cv::Mat(cv::Size(srcMat.cols * 2, srcMat.rows * 3),
srcMat.type());
int threshold1 = 200;
int threshold2 = 100;
while(true)
{
windowMat = cv::Scalar(0, 0, 0);
cv::Mat mat;
cv::Mat tempMat;
// 原图先copy到左边
mat = windowMat(cv::Range(srcMat.rows * 0, srcMat.rows * 1),
cv::Range(srcMat.cols * 0, srcMat.cols * 1));
cv::addWeighted(mat, 0.0f, srcMat, 1.0f, 0.0f, mat);
{
// 灰度图
cv::Mat grayMat;
cv::cvtColor(srcMat, grayMat, cv::COLOR_BGR2GRAY);
// copy
mat = windowMat(cv::Range(srcMat.rows * 1, srcMat.rows * 2),
cv::Range(srcMat.cols * 0, srcMat.cols * 1));
cv::Mat grayMat2;
cv::cvtColor(grayMat, grayMat2, cv::COLOR_GRAY2BGR);
cv::addWeighted(mat, 0.0f, grayMat2, 1.0f, 0.0f, mat);
// 均值滤波
cv::blur(grayMat, tempMat, cv::Size(3, 3));
cvui::printf(windowMat, width * 1 + 20, height * 0 + 20, "threshold1");
cvui::trackbar(windowMat, width * 1 + 20, height * 0 + 40, 200, &threshold1, 0, 255);
cvui::printf(windowMat, width * 1 + 20, height * 0 + 100, "threshold2");
cvui::trackbar(windowMat, width * 1 + 20, height * 0 + 120, 200, &threshold2, 0, 255);
// canny边缘检测
cv::Canny(tempMat, tempMat, threshold1, threshold2);
// copy
mat = windowMat(cv::Range(srcMat.rows * 1, srcMat.rows * 2),
cv::Range(srcMat.cols * 1, srcMat.cols * 2));
cv::cvtColor(tempMat, grayMat2, cv::COLOR_GRAY2BGR);
cv::addWeighted(mat, 0.0f, grayMat2, 1.0f, 0.0f, mat);
// harris角点检测
cv::cornerHarris(grayMat, grayMat2, 2, 3, 0.01);
// 归一化与转换
cv::normalize(grayMat2, grayMat2, 0, 255, cv::NORM_MINMAX, CV_32FC1, cv::Mat());
cv::convertScaleAbs(grayMat2 , grayMat2); //将归一化后的图线性变换成 8U位元符号整
// copy
mat = windowMat(cv::Range(srcMat.rows * 2, srcMat.rows * 3),
cv::Range(srcMat.cols * 0, srcMat.cols * 1));
cv::cvtColor(grayMat2, grayMat2, cv::COLOR_GRAY2BGR);
cv::addWeighted(mat, 0.0f, grayMat2, 1.0f, 0.0f, mat);
// harris角点检测
cv::cornerHarris(tempMat, tempMat, 2, 3, 0.01);
// 归一化与转换
cv::normalize(tempMat, tempMat, 0, 255, cv::NORM_MINMAX, CV_32FC1, cv::Mat());
cv::convertScaleAbs(tempMat , tempMat); //将归一化后的图线性变换成 8U位元符号整
// copy
mat = windowMat(cv::Range(srcMat.rows * 2, srcMat.rows * 3),
cv::Range(srcMat.cols * 1, srcMat.cols * 2));
cv::cvtColor(tempMat, tempMat, cv::COLOR_GRAY2BGR);
cv::addWeighted(mat, 0.0f, tempMat, 1.0f, 0.0f, mat);
}
// 更新
cvui::update();
// 显示
cv::imshow(windowName, windowMat);
// esc键退出
if(cv::waitKey(25) == 27)
{
break;
}
}
}
对应版本号v1.54.0
上一篇:《OpenCV开发笔记(五十九):红胖子8分钟带你深入了解分水岭算法(图文并茂+浅显易懂+程序源码)》
下一篇:《OpenCV开发笔记(六十一):红胖子8分钟带你深入了解Shi-Tomasi角点检测(图文并茂+浅显易懂+程序源码)》
原博主博客地址:https://blog.csdn.net/qq21497936
原博主博客导航:https://blog.csdn.net/qq21497936/article/details/102478062
本文章博客地址:https://blog.csdn.net/qq21497936/article/details/106367317