spark-streaming使用spark-ML模型实时预测

不得不说Spark是一款优秀的计算引擎,继承Spark-ML、Spark-Graphx机器学习和图计算框架,Spark-ML一般用于离线分析和挖掘,生成模型。
spark-streaming使用spark-ML模型实时预测_第1张图片如果我们把模型保存在HDFS,需要在实时计算里面使用提前训练好的模型,
解决方案如下:
1、通过转换序列化方式,把模型转换成可以被其他语言调用的方式,如:java、python
2、在spark-streaming中使用
具体读取kafak的配置信息和保证EOS的不在这里体现,主要体现如何使用Spark-ML训练好的模型,具体代码如下:

val spark = SparkSession.builder().
      appName("StreamingMLModel").
      getOrCreate()

    import spark.implicits._
    val ssc = new StreamingContext(spark.sparkContext, Seconds(2))
    val bootstrapServer = ""
    val groupId = "E30E62E2-8B73-BBB0-AA8C-1A53E400646F-1"

    val kafkaParams = Map(
      ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG -> bootstrapServer,
      ConsumerConfig.GROUP_ID_CONFIG -> groupId,
      ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG -> classOf[StringDeserializer],
      ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG -> classOf[StringDeserializer],
      ConsumerConfig.AUTO_OFFSET_RESET_CONFIG -> "latest", 
      ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG -> "false", 
      ConsumerConfig.MAX_POLL_RECORDS_CONFIG -> "100000" 
    )
    val newsTopic = ""
    val topicSet = Set(newsTopic)
    val kafkaStream = KafkaUtils.createDirectStream(ssc,
      LocationStrategies.PreferConsistent,
      ConsumerStrategies.Subscribe[String, String](topicSet, kafkaParams)
    )
    val bayesPipeLineModelPath = ""
    val pipeLine = PipelineModel.load(bayesPipeLineModelPath)
    val source = kafkaStream.map(_.value()).map(JSON.parseObject)
    source.foreachRDD(rdd => {
      if (!rdd.isEmpty()) {
        //除微博外的数据
        val data = rdd.map(jsonObj => (jsonObj.getString("id"), jsonObj.getString("content"))).
          toDF("id", "content")
        val predict = pipeLine.transform(data)
        val filterRdd = predict.select("id", "prediction").
          map(row => (row.getString(0), row.getDouble(1)))
        filterRdd.foreachPartition(records => {
          val list = records.toList
          val goodNews = list.filter { case (news, bayes) => bayes == 1.0 }
          val badNews = list.filter { case (news, bayes) => bayes == 0.0 }
          // todo 输出外部DB或缓存或kafka
        })
      }
    })

1、当流计算首次启动的时候,一定要限速
2、在streaming页面或者给予StreamingListener添加监控类

你可能感兴趣的:(spark及问题解决,机器学习,spark,大数据,机器学习)