消息队列面试准备

一、基本说明

面试官:你好
候选人:你好
(大家寒暄一下。。。)
(面试官在你的简历上面看到了,呦,有个亮点,就是你在项目里用过MQ,比如说你用过ActiveMQ)
 
面试官:你在系统里用过消息队列吗?(面试官在随和的语气中展开了面试)
候选人:用过的(此时感觉没啥)
 
面试官:那你说一下你们在项目里是怎么用消息队列的?
候选人:巴拉巴拉,我们啥啥系统发送个啥啥消息到队列,别的系统来消费啥啥的
(很多人在这里会进入一个误区,就是你仅仅就是知道以及回答你们是怎么用这个消息队列的,用这个消息队列来干了个什么事情?)
候选人:比如我们有个订单系统,订单系统会每次下一个新的订单的时候,就会发送时一条消息到ActiveMQ里面去,后台有个库存系统负责获取了消息然后更新库存。
 
面试官:那你们为什么使用消息队列啊?
(你的订单系统不发送消息到MQ,直接订单系统调用库存系统一个接口,咔嚓一下,直接就调用成功能了,库存就更新了)
候选人:额。。。(楞了一下,为什么?我没怎么仔细想过啊,老大让用就用了),硬着头皮胡言乱语了几句
(面试官此时听你楞了一下,然后听你胡言乱语了几句,开始心里觉得有点儿那什么了,怀疑你之前就压根儿没思考过这问题)
 
面试官:那你说说用消息队列都有什么优点和缺点?
(面试官此时心里想的是,你的MQ在项目里为啥要用?你没考虑过,那我稍微简单点儿,我问问你消息队列你之前有没有考虑过如果用的话,优点和缺点分别是啥?)
候选人:这个。。。(确实平时没怎么考虑过这个问题啊。。。胡言乱语了)
(面试官此时心里已经更觉得你这哥儿们不行,平时都没什么思考)
 
面试官:kafka、activemq、rabbitmq、rocketmq都有什么区别?
(面试官问你这个问题,就是说,绕过比较虚的话题,直接看看你对各种MQ中间件是否了解,是否做过功课,是否做过调研)
候选人:我们就用过activemq,所以别的没用过。。。区别,也不太清楚
(面试官此时却是觉得你这哥儿们平时就是瞎用,根本就没什么思考,觉得不行)
 
面试官:那你们是如何保证消息队列的高可用啊?
候选人:这个。。。我平时就是简单走api调用一下,不太清楚消息队列怎么部署的。。。
 
面试官:如何保证消息不被重复消费啊?如何保证消费的时候是幂等的啊?
候选人:啥?(mq不就是写入和消费就可以了,哪来这么多问题)
 
面试官:如何保证消息的可靠性传输啊?要是消息丢失了怎么办啊?
候选人:我们没怎么丢过消息啊。。。
 
面试官:那如何保证消息的顺序性?
候选人:顺序性?什么意思?我为什么要保证消息的顺序性?
 
面试官:如何解决消息队列的延时以及过期失效问题?消息队列满了以后该怎么处理?有几百万消息持续积压几小时,说说怎么解决?
候选人:不是,我这平时没遇到过这些问题啊,就是简单用用,知道mq的一些功能
 
面试官:如果让你写一个消息队列,该如何进行架构设计啊?说一下你的思路
候选人:。。。。。我还是走吧。。。。
其实上面是一个非常典型的关于消息队列的技术考察过程,好的面试官一定是从你做过的某一个点切入,然后层层展开深入考察,一个接一个问,直到把这个技术点刨根问底,问到最底层。
如果没有刻意的对这种面试方式锻炼一下,出去面试碰到难一点的面试,大多会手忙脚乱,基本面试以失败为告终。
但是如果你把这些常见问题都掌握了,哪怕是面试官没问到你这么深入,他问你一个消息队列问题,你就自己给他说出自己的一整套见解,那么恭喜你,就是plus加分项了。

二、如何进行消息队列的技术选型

1、面试题

为什么使用消息队列啊?消息队列有什么优点和缺点啊?kafka、activemq、rabbitmq、rocketmq都有什么区别以及适合哪些场景?

2、面试官心理分析

其实面试官主要是想看看:
(1)第一,你知道不知道你们系统里为什么要用消息队列这个东西?
好多人说自己项目里用了redis、mq,但是其实他并不知道自己为什么要用这个东西。其实说白了,就是为了用而用,或者是别人设计的架构,他从头到尾没思考过。
没有对自己的架构问过为什么的人,一定是平时没有思考的人,面试官对这类候选人印象通常很不好。因为进了团队担心你就木头木脑的干呆活儿,不会自己思考。
(2)第二,你既然用了消息队列这个东西,你知道不知道用了有什么好处?
系统中引入消息队列之后会不会有什么坏处?你要是没考虑过这个,那你盲目弄个MQ进系统里,后面出了问题你是不是就自己溜了给公司留坑?你要是没考虑过引入一个技术可能存在的弊端和风险,面试官把这类候选人招进来了,基本可能就是挖坑型选手。
(3)第三,既然你用了MQ,可能是某一种MQ,那么你当时做没做过调研啊?
你别傻乎乎的自己拍脑袋看个人喜好就瞎用了一个MQ,比如kafka。甚至都从没调研过业界到底流行的MQ有哪几种?每一个MQ的优点和缺点是什么?每一个MQ没有绝对的好坏,但是就是看用在哪个场景可以扬长避短,利用其优势,规避其劣势。
如果是一个不考虑技术选型的候选人招进了团队,面试官交给他一个任务,去设计个什么系统,他在里面用一些技术,可能都没考虑过选型,最后选的技术可能并不一定合适,一样是留坑

3、面试题剖析

(1)为什么使用消息队列啊?
其实就是问问你消息队列都有哪些使用场景,然后你项目里具体是什么场景,说说你在这个场景里用消息队列是什么。
面试官问你这个问题,期望的一个回答是说,你们公司有个什么业务场景,这个业务场景有个什么技术挑战,如果不用MQ可能会很麻烦,但是你现在用了MQ之后带给了你很多的好处。
先说一下消息队列的常见使用场景吧,其实场景有很多,但是比较核心的有3个:解耦异步削峰

1.解耦

A系统发送个数据到BCD三个系统,接口调用发送,那如果E系统也要这个数据呢?那如果C系统现在不需要了呢?现在A系统又要发送第二种数据了呢?A系统负责人濒临崩溃中。。。再来点更加崩溃的事儿,A系统要时时刻刻考虑BCDE四个系统如果挂了咋办?我要不要重发?我要不要把消息存起来?头发都没了啊。。。
消息队列面试准备_第1张图片
你需要去考虑一下你负责的系统中是否有类似的场景,就是一个系统或者一个模块,调用了多个系统或者模块,互相之间的调用很复杂,维护起来很麻烦。但是其实这个调用是不需要直接同步调用接口的,如果用MQ给他异步化解耦,也是可以的,你就需要去考虑在你的项目里,是不是可以运用这个MQ去进行系统的解耦。在简历中体现出来这块东西,用MQ作解耦。
消息队列面试准备_第2张图片

2.异步

A系统接收一个请求,需要在自己本地写库,还需要在BCD三个系统写库,自己本地写库要3ms,BCD三个系统分别写库要300ms、450ms、200ms。最终请求总延时是3 + 300 + 450 + 200 = 953ms,接近1s,用户感觉搞个什么东西,慢死了。
消息队列面试准备_第3张图片
但是此时如果采用消息队列呢?
消息队列面试准备_第4张图片

3.削峰

每天0点到11点,A系统风平浪静,每秒并发请求数量就100个。结果每次一到11点~1点,每秒并发请求数量突然会暴增到1万条。但是系统最大的处理能力就只能是每秒钟处理1000个请求啊。。。尴尬了,系统会死。。。
消息队列面试准备_第5张图片
怎么办?加机器?高峰也就一两个小时,平时流量根本就没用这么大,为了俩小时的高峰期就加一堆机器显然不划算。如果把高峰期的数据放到平时服务器空闲时间处理就好了,具体也就是要处理的数据先放到MQ中,然后消费端慢慢处理就OK,高峰期数据可以先积压到队列中去。
消息队列面试准备_第6张图片

三、消息队列的优点和缺点

优点上面已经说了,就是在特殊场景下有其对应的好处,解耦异步削峰。缺点呢?显而易见的。
消息队列面试准备_第7张图片
系统可用性降低:系统引入的外部依赖越多,越容易挂掉,本来你就是A系统调用BCD三个系统的接口就好了,人家ABCD四个系统好好的,没啥问题,你偏加个MQ进来,万一MQ挂了咋整?MQ挂了,整套系统崩溃了,你不就完了么。
系统复杂性提高:硬生生加个MQ进来,你怎么保证消息没有重复消费?怎么处理消息丢失的情况?怎么保证消息传递的顺序性?头大头大,问题一大堆,痛苦不已
一致性问题:A系统处理完了直接返回成功了,人家都以为你这个请求就成功了;但是问题是,要是BCD三个系统那里,BD两个系统写库成功了,结果C系统写库失败了,咋整?你这数据就不一致了。
所以消息队列实际是一种非常复杂的架构,你引入它有很多好处,但是也得针对它带来的坏处做各种额外的技术方案和架构来规避掉,做好之后,你会发现,妈呀,系统复杂度提升了一个数量级,也许是复杂了10倍。但是关键时刻,用,还是得用的。

四、几个MQ的比较

kafka、activemq、rabbitmq、rocketmq都有什么优点和缺点啊?常见的MQ其实就这几种,别的还有很多其他MQ,但是比较冷门的,那么就别多说了。作为一个码农,你起码得知道各种mq的优点和缺点吧,咱们来画个表格看看:

 

特性

ActiveMQ

RabbitMQ

RocketMQ

Kafka

单机吞吐量

万级,吞吐量比RocketMQ和Kafka要低了一个数量级。

万级,吞吐量比RocketMQ和Kafka要低了一个数量级。

10万级,RocketMQ也是可以支撑高吞吐的一种MQ。

10万级别,这是kafka最大的优点,就是吞吐量高;

一般配合大数据类的系统来进行实时数据计算、日志采集等场景。

topic数量对吞吐量的影响

 

 

topic可以达到几百,几千个的级别,吞吐量会有较小幅度的下降;

这是RocketMQ的一大优势,在同等机器下,可以支撑大量的topic。

topic从几十个到几百个的时候,吞吐量会大幅度下降;

所以在同等机器下,kafka尽量保证topic数量不要过多。如果要支撑大规模topic,需要增加更多的机器资源。

时效性

ms级

微秒级,这是rabbitmq的一大特点,延迟是最低的

ms级

延迟在ms级以内

可用性

高,基于主从架构实现高可用性

高,基于主从架构实现高可用性

非常高,分布式架构

非常高,kafka是分布式的,一个数据多个副本,少数机器宕机,不会丢失数据,不会导致不可用

消息可靠性

有较低的概率丢失数据

 

经过参数优化配置,可以做到0丢失

经过参数优化配置,消息可以做到0丢失

功能支持

MQ领域的功能极其完备

基于erlang开发,所以并发能力很强,性能极其好,延时很低

MQ功能较为完善,还是分布式的,扩展性好

功能较为简单,主要支持简单的MQ功能,在大数据领域的实时计算以及日志采集被大规模使用,是事实上的标准

优劣势总结

非常成熟,功能强大,在业内大量的公司以及项目中都有应用;

偶尔会有较低概率丢失消息;

而且现在社区以及国内应用都越来越少,几个月才发布一个版本;

而且确实主要是基于解耦和异步来用的,较少在大规模吞吐的场景中使用。

 

erlang语言开发,性能极其好,延时很低;

吞吐量到万级,MQ功能比较完备;

而且开源提供的管理界面非常棒,用起来很好用;

社区相对比较活跃,几乎每个月都发布几个版本分;

在国内一些互联网公司近几年用rabbitmq也比较多一些;

但是问题也是显而易见的,RabbitMQ确实吞吐量会低一些,这是因为他做的实现机制比较重;

而且erlang开发,国内有几个公司有实力做erlang源码级别的研究和定制?如果说你没这个实力的话,确实偶尔会有一些问题,你很难去看懂源码,你公司对这个东西的掌控很弱,基本职能依赖于开源社区的快速维护和修复bug;

而且rabbitmq集群动态扩展会很麻烦,不过这个我觉得还好。其实主要是erlang语言本身带来的问题。很难读源码,很难定制和掌控。

接口简单易用,而且毕竟在阿里大规模应用过,有阿里品牌保障;

日处理消息上百亿之多,可以做到大规模吞吐,性能也非常好,分布式扩展也很方便,社区维护还可以,可靠性和可用性都是ok的,还可以支撑大规模的topic数量,支持复杂MQ业务场景;

而且一个很大的优势在于,阿里出品都是java系的,我们可以自己阅读源码,定制自己公司的MQ,可以掌控;

社区活跃度相对较为一般,不过也还可以,文档相对来说简单一些,然后接口这块不是按照标准JMS规范走的有些系统要迁移需要修改大量代码;

还有就是阿里出台的技术,你得做好这个技术万一被抛弃,社区黄掉的风险。

kafka的特点其实很明显,就是仅仅提供较少的核心功能,但是提供超高的吞吐量,ms级的延迟,极高的可用性以及可靠性,而且分布式可以任意扩展;

同时kafka最好是支撑较少的topic数量即可,保证其超高吞吐量;

而且kafka唯一的一点劣势是有可能消息重复消费,那么对数据准确性会造成极其轻微的影响,在大数据领域中以及日志采集中,这点轻微影响可以忽略;

 这个特性天然适合大数据实时计算以及日志收集。

综上所述,各种对比之后,个人倾向的做法是:

  • 一般的业务系统要引入MQ,最早大家都用ActiveMQ,但是现在确实大家用的不多了,没经过大规模吞吐量场景的验证,社区也不是很活跃,所以大家还是算了吧;
  • 后来大家开始用RabbitMQ,但是确实erlang语言阻止了大量的java工程师去深入研究和掌控他,对公司而言,几乎处于不可控的状态,但是确实人是开源的,比较稳定的支持,活跃度也高;
  • 不过现在确实越来越多的公司,会去用RocketMQ,确实很不错,但是自己想好社区万一突然黄掉的风险,对自己公司技术实力有绝对自信的,推荐用RocketMQ,否则回去老老实实用RabbitMQ吧,人家是活跃开源社区,绝对不会黄;
  • 所以中小型公司,技术实力较为一般,技术挑战不是特别高,用RabbitMQ是不错的选择;大型公司,基础架构研发实力较强,用RocketMQ是很好的选择;
  • 如果是大数据领域的实时计算、日志采集等场景,用Kafka是业内标准的,绝对没问题,社区活跃度很高,绝对不会黄,何况几乎是全世界这个领域的事实性规范。

五、消息队列高可用的保证

1、面试题

如何保证消息队列的高可用啊?

2、面试官心理分析

如果有人问到你MQ的知识,高可用是必问的,因为MQ的缺点,刚才已经说过了,有好多,导致系统可用性降低,等等。所以只要你用了MQ,接下来问的一些要点肯定就是围绕着MQ的那些缺点怎么来解决了。
要是你傻乎乎的就干用了一个MQ,各种问题从来没考虑过,那你就杯具了,面试官对你的印象就是,只会简单实用一些技术,没任何思考,马上对你的印象就不太好了。

3、面试题剖析

这个问题这么问是很好的,因为不能问你kafka的高可用性怎么保证啊?ActiveMQ的高可用性怎么保证啊?一个面试官要是这么问就显得很没水平,人家可能用的就是RabbitMQ,没用过Kafka,你上来问人家kafka干什么?这不是摆明了刁难人么。
所以有水平的面试官,问的是MQ的高可用性怎么保证?这样就是你用过哪个MQ,你就说说你对那个MQ的高可用性的理解。

1.RabbitMQ的高可用性

RabbitMQ是比较有代表性的,因为是基于主从做高可用性的,我们就以他为例子讲解第一种MQ的高可用性怎么实现。rabbitmq有三种模式:单机模式普通集群模式镜像集群模式
1)单机模式
就是demo级别的,一般就是你本地启动了玩玩儿的,没人生产用单机模式。
2)普通集群模式
意思就是在多台机器上启动多个rabbitmq实例,每个机器启动一个。但是你创建的queue,只会放在一个rabbtimq实例上,但是每个实例都同步queue的元数据(queue的基本信息,没用实际数据)。你消费的时候,实际上如果连接到了另外一个实例,那么那个实例会从queue所在实例上拉取数据过来。
消息队列面试准备_第8张图片
这种方式确实很麻烦,也不怎么好,没做到所谓的分布式,就是个普通集群。因为这导致你要么消费者每次随机连接一个实例然后拉取数据,要么固定连接那个queue所在实例消费数据,前者有数据拉取的开销,后者导致单实例性能瓶颈。
而且如果那个放queue的实例宕机了,会导致接下来其他实例就无法从那个实例拉取,如果你开启了消息持久化,让rabbitmq落地存储消息的话,消息不一定会丢,得等这个实例恢复了,然后才可以继续从这个queue拉取数据。
所以这个事儿就比较尴尬了,这就没有什么所谓的高可用性可言了,这种方案主要是提高吞吐量的,就是说让集群中多个节点来服务某个queue的读写操作。
3)镜像集群模式
这种模式,才是所谓的rabbitmq的高可用模式,跟普通集群模式不一样的是,你创建的queue,无论元数据还是queue里的消息都会存在于多个实例上,然后每次你写消息到queue的时候,都会自动把消息到多个实例的queue里进行消息同步。
这样的话,好处在于,你任何一个机器宕机了,没事儿,别的机器都可以用。坏处在于,第一,这个性能开销也太大了吧,消息同步所有机器,导致网络带宽压力和消耗很重!第二,这么玩儿,就没有扩展性可言了,如果某个queue负载很重,你加机器,新增的机器也包含了这个queue的所有数据,并没有办法线性扩展你的queue。
消息队列面试准备_第9张图片
那么怎么开启这个镜像集群模式呢?我这里简单说一下,避免面试人家问你你不知道,其实很简单rabbitmq有很好的管理控制台,就是在后台新增一个策略,这个策略是镜像集群模式的策略,指定的时候可以要求数据同步到所有节点的,也可以要求就同步到指定数量的节点,然后你再次创建queue的时候,应用这个策略,就会自动将数据同步到其他的节点上去了。

2.kafka的高可用性

kafka一个最基本的架构认识:多个broker组成,每个broker是一个节点;你创建一个topic,这个topic可以划分为多个partition,每个partition可以存在于不同的broker上,每个partition就放一部分数据。
这就是天然的分布式消息队列,就是说一个topic的数据,是分散放在多个机器上的,每个机器就放一部分数据。实际上rabbitmq之类的,并不是分布式消息队列,他就是传统的消息队列,只不过提供了一些集群、HA的机制而已,因为无论怎么玩儿,rabbitmq一个queue的数据都是放在一个节点里的,镜像集群下,也是每个节点都放这个queue的完整数据。
kafka 0.8以前,是没有HA机制的,就是任何一个broker宕机了,那个broker上的partition就废了,没法写也没法读,没有什么高可用性可言。
kafka 0.8以后,提供了HA机制,就是replica副本机制。每个partition的数据都会同步到吉他机器上,形成自己的多个replica副本。然后所有replica会选举一个leader出来,那么生产和消费都跟这个leader打交道,然后其他replica就是follower。写的时候,leader会负责把数据同步到所有follower上去,读的时候就直接读leader上数据即可。只能读写leader?很简单,要是你可以随意读写每个follower,那么就要care数据一致性的问题,系统复杂度太高,很容易出问题。kafka会均匀的将一个partition的所有replica分布在不同的机器上,这样才可以提高容错性。
这么搞,就有所谓的高可用性了,因为如果某个broker宕机了,没事儿,那个broker上面的partition在其他机器上都有副本的,如果这上面有某个partition的leader,那么此时会重新选举一个新的leader出来,大家继续读写那个新的leader即可。这就有所谓的高可用性了。
消息队列面试准备_第10张图片
写数据的时候,生产者就写leader,然后leader将数据落地写本地磁盘,接着其他follower自己主动从leader来pull数据。一旦所有follower同步好数据了,就会发送ack给leader,leader收到所有follower的ack之后,就会返回写成功的消息给生产者。(当然,这只是其中一种模式,还可以适当调整这个行为)
消费的时候,只会从leader去读,但是只有一个消息已经被所有follower都同步成功返回ack的时候,这个消息才会被消费者读到。
实际上这块机制,讲深了,是可以非常之深入的,但是我还是回到我们这个课程的主题和定位,聚焦面试,至少你听到这里大致明白了kafka是如何保证高可用机制的了,对吧?不至于一无所知,现场还能给面试官画画图。要遇上面试官确实是kafka高手,深挖了问,那你只能说不好意思,太深入的你没研究过。

六、消息队列中重复消费问题

1、面试题

如何保证消息不被重复消费啊(如何保证消息消费时的幂等性)?

2、面试官心里分析

其实这个很常见的一个问题,这俩问题基本可以连起来问。既然是消费消息,那肯定要考虑考虑会不会重复消费?能不能避免重复消费?或者重复消费了也别造成系统异常可以吗?这个是MQ领域的基本问题,其实本质上还是问你使用消息队列如何保证幂等性,这个是你架构里要考虑的一个问题。

3、面试题剖析

回答这个问题,首先你别听到重复消息这个事儿,就一无所知吧,你先大概说一说可能会有哪些重复消费的问题。
首先就是比如rabbitmq、rocketmq、kafka,都有可能会出现消费重复消费的问题,正常。因为这问题通常不是mq自己保证的,是给你保证的。然后我们挑一个kafka来举个例子,说说怎么重复消费吧。
kafka实际上有个offset的概念,就是每个消息写进去,都有一个offset,代表他的序号,然后consumer消费了数据之后,每隔一段时间,会把自己消费过的消息的offset提交一下,代表我已经消费过了,下次我要是重启啥的,你就让我继续从上次消费到的offset来继续消费吧。
但是凡事总有意外,就是你有时候重启系统,看你怎么重启了,如果碰到点着急的,直接kill进程了,再重启。这会导致consumer有些消息处理了,但是没来得及提交offset,尴尬了。重启之后,少数消息会再次消费一次。
其实重复消费不可怕,可怕的是你没考虑到重复消费之后,怎么保证幂等性。
举个例子吧。假设你有个系统,消费一条往数据库里插入一条,要是你一个消息重复两次,你不就插入了两条,这数据不就错了?但是你要是消费到第二次的时候,自己判断一下已经消费过了,直接扔了,不就保留了一条数据?
一条数据重复出现两次,数据库里就只有一条数据,这就保证了系统的幂等性。幂等性,通俗点说,就一个数据,或者一个请求,给你重复来多次,你得确保对应的数据是不会改变的,不能出错。
那所以第二个问题来了,怎么保证消息队列消费的幂等性?其实还是得结合业务来思考,这里给几个思路:
(1)比如你拿个数据要写库,你先根据主键查一下,如果这数据都有了,你就别插入了,update一下好吧;
(2)比如你是写redis,那没问题了,反正每次都是set,天然幂等性;
(3)比如你不是上面两个场景,那做的稍微复杂一点,你需要让生产者发送每条数据的时候,里面加一个全局唯一的id,类似订单id之类的东西,然后你这里消费到了之后,先根据这个id去比如redis里查一下,之前消费过吗?如果没有消费过,你就处理,然后这个id写redis。如果消费过了,那你就别处理了,保证别重复处理相同的消息即可;
(4)还有比如基于数据库的唯一键来保证重复数据不会重复插入多条,重复数据拿到了以后我们插入的时候,因为有唯一键约束了,所以重复数据只会插入报错,不会导致数据库中出现脏数据。
消息队列面试准备_第11张图片
如何保证MQ的消费是幂等性的,需要结合具体的业务来看。

七、消息队列中数据丢失问题

1、面试题

如何保证消息的可靠性传输(如何处理消息丢失的问题)?

2、面试官心里分析

这个是肯定的,用mq有个基本原则,就是数据不能多一条,也不能少一条,不能多,就是刚才说的重复消费和幂等性问题。不能少,就是说这数据别搞丢了。那这个问题你必须得考虑一下。
如果说你这个是用mq来传递非常核心的消息,比如说计费,扣费的一些消息,因为我以前研发过一个公司非常核心的计费系统,计费系统是很重的一个业务,操作是很耗时的。所以说系统整体的架构里面,实际上是将计费做成异步化的,然后中间就是加了一个MQ。

3、面试题剖析

这个丢数据,mq一般分为两种,要么是mq自己弄丢了,要么是我们消费的时候弄丢了。咱们从rabbitmq和kafka分别来分析一下吧。

1.rabbitmq

1)生产者弄丢了数据
生产者将数据发送到rabbitmq的时候,可能数据就在半路给搞丢了,因为网络啥的问题,都有可能。
此时可以选择用rabbitmq提供的事务功能,就是生产者发送数据之前开启rabbitmq事务(channel.txSelect),然后发送消息,如果消息没有成功被rabbitmq接收到,那么生产者会收到异常报错,此时就可以回滚事务(channel.txRollback),然后重试发送消息;如果收到了消息,那么可以提交事务(channel.txCommit)。但是问题是,rabbitmq事务机制一搞,基本上吞吐量会下来,因为太耗性能。
所以一般来说,如果你要确保说写rabbitmq的消息别丢,可以开启confirm模式,在生产者那里设置开启confirm模式之后,你每次写的消息都会分配一个唯一的id,然后如果写入了rabbitmq中,rabbitmq会给你回传一个ack消息,告诉你说这个消息ok了。如果rabbitmq没能处理这个消息,会回调你一个nack接口,告诉你这个消息接收失败,你可以重试。而且你可以结合这个机制自己在内存里维护每个消息id的状态,如果超过一定时间还没接收到这个消息的回调,那么你可以重发。
消息队列面试准备_第12张图片
事务机制和cnofirm机制最大的不同在于,事务机制是同步的,你提交一个事务之后会阻塞在那儿,但是confirm机制是异步的,你发送个消息之后就可以发送下一个消息,然后那个消息rabbitmq接收了之后会异步回调你一个接口通知你这个消息接收到了。
所以一般在生产者这块避免数据丢失,都是用confirm机制的。
2)rabbitmq弄丢了数据
就是rabbitmq自己弄丢了数据,这个你必须开启rabbitmq的持久化,就是消息写入之后会持久化到磁盘,哪怕是rabbitmq自己挂了,恢复之后会自动读取之前存储的数据,一般数据不会丢。除非极其罕见的是,rabbitmq还没持久化,自己就挂了,可能导致少量数据会丢失的,但是这个概率较小。
设置持久化有两个步骤,第一个是创建queue的时候将其设置为持久化的,这样就可以保证rabbitmq持久化queue的元数据,但是不会持久化queue里的数据;第二个是发送消息的时候将消息的deliveryMode设置为2,就是将消息设置为持久化的,此时rabbitmq就会将消息持久化到磁盘上去。必须要同时设置这两个持久化才行,rabbitmq哪怕是挂了,再次重启,也会从磁盘上重启恢复queue,恢复这个queue里的数据。
而且持久化可以跟生产者那边的confirm机制配合起来,只有消息被持久化到磁盘之后,才会通知生产者ack了,所以哪怕是在持久化到磁盘之前,rabbitmq挂了,数据丢了,生产者收不到ack,你也是可以自己重发的。
哪怕是你给rabbitmq开启了持久化机制,也有一种可能,就是这个消息写到了rabbitmq中,但是还没来得及持久化到磁盘上,结果不巧,此时rabbitmq挂了,就会导致内存里的一点点数据会丢失。
3)消费端弄丢了数据
rabbitmq如果丢失了数据,主要是因为你消费的时候,刚消费到,还没处理,结果进程挂了,比如重启了,那么就尴尬了,rabbitmq认为你都消费了,这数据就丢了。
这个时候得用rabbitmq提供的ack机制,简单来说,就是你关闭rabbitmq自动ack,可以通过一个api来调用就行,然后每次你自己代码里确保处理完的时候,再程序里ack一把。这样的话,如果你还没处理完,不就没有ack?那rabbitmq就认为你还没处理完,这个时候rabbitmq会把这个消费分配给别的consumer去处理,消息是不会丢的。

2.kafka

1)消费端弄丢了数据
唯一可能导致消费者弄丢数据的情况,就是说,你那个消费到了这个消息,然后消费者那边自动提交了offset,让kafka以为你已经消费好了这个消息,其实你刚准备处理这个消息,你还没处理,你自己就挂了,此时这条消息就丢咯。
这不是一样么,大家都知道kafka会自动提交offset,那么只要关闭自动提交offset,在处理完之后自己手动提交offset,就可以保证数据不会丢。但是此时确实还是会重复消费,比如你刚处理完,还没提交offset,结果自己挂了,此时肯定会重复消费一次,自己保证幂等性就好了。
生产环境碰到的一个问题,就是说我们的kafka消费者消费到了数据之后是写到一个内存的queue里先缓冲一下,结果有的时候,你刚把消息写入内存queue,然后消费者会自动提交offset。
然后此时我们重启了系统,就会导致内存queue里还没来得及处理的数据就丢失了。
2)kafka弄丢了数据
这块比较常见的一个场景,就是kafka某个broker宕机,然后重新选举partiton的leader时。大家想想,要是此时其他的follower刚好还有些数据没有同步,结果此时leader挂了,然后选举某个follower成leader之后,他不就少了一些数据?这就丢了一些数据啊。
消息队列面试准备_第13张图片
所以此时一般是要求起码设置如下4个参数:
  • 给这个topic设置replication.factor参数:这个值必须大于1,要求每个partition必须有至少2个副本;
  • 在kafka服务端设置min.insync.replicas参数:这个值必须大于1,这个是要求一个leader至少感知到有至少一个follower还跟自己保持联系,没掉队,这样才能确保leader挂了还有一个follower吧;
  • 在producer端设置acks=all:这个是要求每条数据,必须是写入所有replica之后,才能认为是写成功了;
  • 在producer端设置retries=MAX(很大很大很大的一个值,无限次重试的意思):这个是要求一旦写入失败,就无限重试,卡在这里了;
  • 我们生产环境就是按照上述要求配置的,这样配置之后,至少在kafka broker端就可以保证在leader所在broker发生故障,进行leader切换时,数据不会丢失。
3)生产者会不会弄丢数据
如果按照上述的思路设置了ack=all,一定不会丢,要求是,你的leader接收到消息,所有的follower都同步到了消息之后,才认为本次写成功了。如果没满足这个条件,生产者会自动不断的重试,重试无限次。

八、消息队列顺序性的保证

1、面试题

如何保证消息的顺序性?

2、面试官心里分析

其实这个也是用MQ的时候必问的话题,第一看看你了解不了解顺序这个事儿?第二看看你有没有办法保证消息是有顺序的?这个生产系统中常见的问题。

3、面试题剖析

举个例子,比如我们要做一个mysql binlog同步的系统,日同步数据要达到上亿。常见的一点在于说大数据team,就需要同步一个mysql库过来,对公司的业务系统的数据做各种复杂的操作。
你在mysql里增删改一条数据,对应出来了增删改3条binlog,接着这三条binlog发送到MQ里面,到消费出来依次执行,起码得保证人家是按照顺序来的吧?不然本来是:增加、修改、删除;你楞是换了顺序给执行成删除、修改、增加,不全错了么。
本来这个数据同步过来,应该最后这个数据被删除了;结果你搞错了这个顺序,最后这个数据保留下来了,数据同步就出错了。
先看看顺序会错乱的俩场景:
rabbitmq:一个queue,多个consumer,这不明显乱了
消息队列面试准备_第14张图片
kafka:一个topic,一个partition,一个consumer,内部多线程,这不也明显乱了
消息队列面试准备_第15张图片
那如何保证消息的顺序性呢?其实也简单。在rabbitmq中可以拆分多个queue,每个queue一个consumer,就是多一些queue而已,确实是麻烦点;或者就一个queue但是对应一个consumer,然后这个consumer内部用内存队列做排队,然后分发给底层不同的worker来处理。
消息队列面试准备_第16张图片
而对于kafka来说,一个topic,一个partition,一个consumer,内部单线程消费,写N个内存queue,然后N个线程分别消费一个内存queue即可。
消息队列面试准备_第17张图片

九、消息积压问题

1、面试题

如何解决消息队列的延时以及过期失效问题?消息队列满了以后该怎么处理?有几百万消息持续积压几小时,说说怎么解决?

2、面试官心里分析

你看这问法,其实本质针对的场景,都是说,可能你的消费端出了问题,不消费了,或者消费的极其极其慢。接着就坑爹了,可能你的消息队列集群的磁盘都快写满了,都没人消费,这个时候怎么办?或者是整个这就积压了几个小时,你这个时候怎么办?或者是你积压的时间太长了,导致比如rabbitmq设置了消息过期时间后就没了怎么办?
所以就这事儿,其实线上挺常见的,一般不出,一出就是大case,一般常见于,举个例子,消费端每次消费之后要写mysql,结果mysql挂了,消费端hang那儿了,不动了。或者是消费端出了个什么岔子,导致消费速度极其慢。

3、面试题分析

关于这个事儿,我们一个一个来梳理吧,先假设一个场景,我们现在消费端出故障了,然后大量消息在mq里积压,现在事故了,慌了。
(1)大量消息在mq里积压了几个小时了还没解决
几千万条数据在MQ里积压了七八个小时,从下午4点多,积压到了晚上很晚,10点多,11点多。这个时候要不然就是修复consumer的问题,让他恢复消费速度,然后傻傻的等待几个小时消费完毕。这个肯定不能在面试的时候说吧。
一个消费者一秒是1000条,一秒3个消费者是3000条,一分钟是18万条,那一个小时就是1000多万条。所以如果你积压了几百万到上千万的数据,即使消费者恢复了,也需要大概1小时的时间才能恢复过来。
一般这个时候,只能操作临时紧急扩容了,具体操作步骤和思路如下:
  1. 先修复consumer的问题,确保其恢复消费速度,然后将现有cnosumer都停掉
  2. 新建一个topic,partition是原来的10倍,临时建立好原先10倍或者20倍的queue数量
  3. 然后写一个临时的分发数据的consumer程序,这个程序部署上去消费积压的数据,消费之后不做耗时的处理,直接均匀轮询写入临时建立好的10倍数量的queue
  4. 接着临时征用10倍的机器来部署consumer,每一批consumer消费一个临时queue的数据
  5. 这种做法相当于是临时将queue资源和consumer资源扩大10倍,以正常的10倍速度来消费数据
  6. 等快速消费完积压数据之后,得恢复原先部署架构,重新用原先的consumer机器来消费消息

消息队列面试准备_第18张图片

(2)这里我们假设再来第二个坑

假设你用的是rabbitmq,rabbitmq是可以设置过期时间的,就是TTL,如果消息在queue中积压超过一定的时间就会被rabbitmq给清理掉,这个数据就没了。那这就是第二个坑了。这就不是说数据会大量积压在mq里,而是大量的数据会直接搞丢。
这个情况下,就不是说要增加consumer消费积压的消息,因为实际上没啥积压,而是丢了大量的消息。我们可以采取一个方案,就是批量重导。就是大量积压的时候,我们当时就直接丢弃数据了,然后等过了高峰期以后,比如大家一起喝咖啡熬夜到晚上12点以后,用户都睡觉了。
这个时候我们就开始写程序,将丢失的那批数据,写个临时程序,一点一点的查出来,然后重新灌入mq里面去,把白天丢的数据给他补回来。也只能是这样了。
假设1万个订单积压在mq里面,没有处理,其中1000个订单都丢了,你只能手动写程序把那1000个订单给查出来,手动发到mq里去再补一次
(3)然后我们再来假设第三个坑
如果走的方式是消息积压在mq里,那么如果你很长时间都没处理掉,此时导致mq都快写满了,咋办?这个还有别的办法吗?没有,谁让你第一个方案执行的太慢了,你临时写程序,接入数据来消费,消费一个丢弃一个,都不要了,快速消费掉所有的消息。然后走第二个方案,到了晚上再补数据吧。

十、怎么自己设计一个消息队列中间件

1、面试题

如果让你写一个消息队列,该如何进行架构设计啊?说一下你的思路。

2、面试官心里分析

其实聊到这个问题,一般面试官要考察两块:
(1)你有没有对某一个消息队列做过较为深入的原理的了解,或者从整体了解把握住一个mq的架构原理
(2)看看你的设计能力,给你一个常见的系统,就是消息队列系统,看看你能不能从全局把握一下整体架构设计,给出一些关键点出来
说实话,一般面类似问题的时候,大部分人基本都会蒙,因为平时从来没有思考过类似的问题,大多数人就是平时埋头用,从来不去思考背后的一些东西。类似的问题还有,如果让你来设计一个spring框架你会怎么做?如果让你来设计一个dubbo框架你会怎么做?如果让你来设计一个mybatis框架你会怎么做?

3、面试题剖析

其实回答这类问题,说白了,不求你看过那技术的源码,起码你大概知道那个技术的基本原理,核心组成部分,基本架构构成,然后参照一些开源的技术把一个系统设计出来的思路说一下就好。
比如说这个消息队列系统,我们来从以下几个角度来考虑一下:
(1)首先这个mq得支持可伸缩性吧,就是需要的时候快速扩容,就可以增加吞吐量和容量,那怎么搞?设计个分布式的系统呗,参照一下kafka的设计理念,broker -> topic -> partition,每个partition放一个机器,就存一部分数据。如果现在资源不够了,简单啊,给topic增加partition,然后做数据迁移,增加机器,不就可以存放更多数据,提供更高的吞吐量了?
(2)其次你得考虑一下这个mq的数据要不要落地磁盘吧?那肯定要了,落磁盘,才能保证别进程挂了数据就丢了。那落磁盘的时候怎么落啊?顺序写,这样就没有磁盘随机读写的寻址开销,磁盘顺序读写的性能是很高的,这就是kafka的思路。
(3)其次你考虑一下你的mq的可用性啊?这个事儿,具体参考我们之前可用性那个环节讲解的kafka的高可用保障机制。多副本 -> leader & follower -> broker挂了重新选举leader即可对外服务。
(4)能不能支持数据0丢失啊?可以的,参考我们之前说的那个kafka数据零丢失方案
其实一个mq肯定是很复杂的,面试官问你这个问题,其实是个开放题,他就是看看你有没有从架构角度整体构思和设计的思维以及能力。确实这个问题可以刷掉一大批人,因为大部分人平时不思考这些东西。
 

你可能感兴趣的:(面试)