322. Coin Change(硬币找零)

322. Coin Change(硬币找零)

  • Coin Change硬币找零
    • 题目链接
    • 题目描述
    • 题目分析
      • 方法动态规划
        • 算法描述
    • 参考代码

题目链接

https://leetcode.com/problems/coin-change/description/

题目描述

You are given coins of different denominations and a total amount of money amount. Write a function to compute the fewest number of coins that you need to make up that amount. If that amount of money cannot be made up by any combination of the coins, return -1.

Example 1:
coins = [1, 2, 5], amount = 11
return 3 (11 = 5 + 5 + 1)

Example 2:
coins = [2], amount = 3
return -1.

Note:
You may assume that you have an infinite number of each kind of coin.

题目分析

这道题是一道很典型的动态规划题目。对于给定的面额,若已知给定面额分别减去各种面额的硬币一个的最小组成方案,则易知此面额的最小组成方案。语言叙述起来不是很清楚,看状态转移方程就很清楚了:
设组成面额i所需要的最小硬币数是nums[i]
nums[i] = min{ nums[i - coin[j]] } + 1

coin[j]这里是枚举所给的硬币面额

方法:动态规划

算法描述

  1. 建立nums数组,初始化nums[0] = 0其余都是-1
  2. 1开始到amount结束:
      枚举硬币面额c:
        若nums[i - c]有意义(即i - c >= 0 && nums[i - c] != -1),判断能否更新nums[i]的值(即nums[i] == -1 || (nums[i] != -1 && nums[i - c] + 1 < nums[i])``若能更新则更新为nums[i - c] + 1“`
  3. 最终答案是nums[amount]

参考代码

class Solution {
public:
    int coinChange(vector<int>& coins, int amount) {
        vector<int> nums(amount + 1, -1);
        nums[0] = 0;

        for (int i = 1; i <= amount; i++)
            for (auto c : coins)
                if (i - c >= 0 && nums[i - c] != -1) {
                    if (nums[i] == -1)
                        nums[i] = nums[i - c] + 1;
                    else if (nums[i - c] + 1 < nums[i])
                        nums[i] = nums[i - c] + 1;
                }

        return nums[amount];
    }
};

你可能感兴趣的:(LeetCode)