- Open3D 点云DBSCAN聚类算法
MelaCandy
算法聚类numpy计算机视觉图像处理3d
目录一、DBSCAN基本原理二、代码实现2.1关键函数2.2完整代码三、实现效果3.1原始点云3.2聚类后点云Open3D点云算法汇总及实战案例汇总的目录地址:Open3D点云算法与点云深度学习案例汇总(长期更新)-CSDN博客一、DBSCAN基本原理DBSCAN(Density-BasedSpatialClusteringofApplicationswithNoise)是一种基于密度的聚类算法,
- 目标检测领域总结:从传统方法到 Transformer 时代的革新
DoYangTan
目标检测系列目标检测transformer人工智能
目标检测领域总结:从传统方法到Transformer时代的革新目标检测是计算机视觉领域的一个核心任务,它的目标是从输入图像中识别并定位出目标物体。随着深度学习的兴起,目标检测方法已经取得了显著的进展。从最早的传统方法到现如今基于Transformer的先进算法,目标检测的发展经历了多个重要的阶段。本文将详细总结目标检测领域的演进,涵盖传统方法、两阶段检测方法、单阶段检测方法和基于Transform
- 2024MathorCup数学建模之——MathorCup奖杯”获得者经验思路分享
美赛数学建模
数学建模
一、经验分享1.工具选择:顺手即可。Matlab和Python都是比较主流的选择,二者的应用场合各有不同。Python在数据分析、深度学习方面的优势愈发明显,而Matlab更适合进行物理仿真和数值计算。不过随着Python社区不断发展,其功能也愈发全面与强大,因此我们比较推荐学有余力的情况下可以更早接触Python。2.模型算法:多多益善。不一定要精通所有的算法,但是手上至少要准备一些常用的算法(
- AI人工智能软件开发方案:开启智能时代的创新钥匙
广州硅基技术官方
人工智能
一、引言:AI浪潮下的软件开发新机遇近年来,人工智能(AI)技术的迅猛发展如同一股汹涌澎湃的浪潮,席卷了全球各个领域。从最初的概念提出到如今的广泛应用,AI历经了漫长的发展历程,终于迎来了属于它的黄金时代。回首过去,AI的发展并非一帆风顺,早期由于计算能力和算法的限制,经历了多次起伏。但随着大数据、云计算、机器学习、深度学习等技术的不断突破,AI迎来了爆发式增长。如今,AI已经深入到人们生活和工作
- 深度学习框架PyTorch——从入门到精通(6.2)自动微分机制
Fansv587
深度学习pytorch人工智能经验分享python机器学习
本节自动微分机制是上一节自动微分的扩展内容自动微分是如何记录运算历史的保存张量非可微函数的梯度在本地设置禁用梯度计算设置requires_grad梯度模式(GradModes)默认模式(梯度模式)无梯度模式推理模式评估模式(`nn.Module.eval()`)自动求导中的原地操作原地操作的正确性检查多线程自动求导CPU上的并发不确定性计算图保留自动求导节点的线程安全性C++钩子函数不存在线程安全
- Pytorch深度学习教程_9_nn模块构建神经网络
tRNA做科研
深度学习保姆教程深度学习pytorch神经网络
欢迎来到《深度学习保姆教程》系列的第九篇!在前面的几篇中,我们已经介绍了Python、numpy及pytorch的基本使用,进行了梯度及神经网络的实践并学习了激活函数和激活函数,在上一个教程中我们学习了优化算法。今天,我们将开始使用pytorch构建我们自己的神经网络。欢迎订阅专栏进行系统学习:深度学习保姆教程_tRNA做科研的博客-CSDN博客目录1.理解nn模块:(1)使用nn.Sequent
- Radiance Fields from VGGSfM和Mast3r:两种先进3D重建方法的比较与分析
2401_87458718
3d
VGGSfM和Mast3r:3D场景重建的新方向在计算机视觉和3D重建领域,如何从2D图像重建3D场景一直是一个充满挑战的研究课题。近年来,随着深度学习技术的发展,一些新的方法被提出并取得了显著的进展。本文将重点介绍两种最新的基于深度学习的3D重建方法:VGGSfM和Mast3r,并通过GaussianSplatting技术对它们的性能进行全面比较和分析。VGGSfM:基于视觉几何的深度结构运动恢
- 基于 PyTorch 的 MNIST 手写数字分类模型
欣然~
pytorch分类人工智能
一、概述本代码使用PyTorch框架构建了一个简单的神经网络模型,用于解决MNIST手写数字分类任务。代码主要包括数据的加载与预处理、神经网络模型的构建、损失函数和优化器的定义、模型的训练、评估以及最终模型的保存等步骤。二、依赖库torch:PyTorch深度学习框架的核心库,提供了张量操作、自动求导等功能。torch.nn:PyTorch的神经网络模块,包含了各种神经网络层、损失函数等。torc
- 高效快速教你DeepSeek如何进行本地部署并且可视化对话
大富大贵7
程序员知识储备1程序员知识储备2程序员知识储备3经验分享
科技文章:高效快速教你DeepSeek如何进行本地部署并且可视化对话摘要:随着自然语言处理(NLP)技术的进步,DeepSeek作为一款基于深度学习的语义搜索技术,广泛应用于文本理解、对话系统及信息检索等多个领域。本文将探讨如何高效快速地在本地部署DeepSeek,并结合可视化工具实现对话过程的监控与分析。通过详尽的步骤、案例分析与代码示例,帮助开发者更好地理解和应用DeepSeek技术。同时,本
- Python基于深度学习的动物图片识别技术的研究与实现
Java老徐
Python毕业设计python深度学习开发语言深度学习的动物图片识别技术Python动物图片识别技术
博主介绍:✌程序员徐师兄、7年大厂程序员经历。全网粉丝12w+、csdn博客专家、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌文末获取源码联系精彩专栏推荐订阅不然下次找不到哟2022-2024年最全的计算机软件毕业设计选题大全:1000个热门选题推荐✅Java项目精品实战案例《100套》Java微信小程序项目实战《100套》感兴趣的可以先收藏起来,还有大家
- 【深度学习与大模型基础】第7章-特征分解与奇异值分解
lynn-66
深度学习与大模型基础算法机器学习人工智能
一、特征分解特征分解(EigenDecomposition)是线性代数中的一种重要方法,广泛应用于计算机行业的多个领域,如机器学习、图像处理和数据分析等。特征分解将一个方阵分解为特征值和特征向量的形式,帮助我们理解矩阵的结构和性质。1.特征分解的定义对于一个n×n的方阵A,如果存在一个非零向量v和一个标量λ,使得:则称λ为矩阵A的特征值,v为对应的特征向量。特征分解将矩阵A分解为:其中:Q是由特征
- 震惊! “深度学习”都在学习什么
扉间798
深度学习学习人工智能
常见的机器学习分类算法俗话说三个臭皮匠胜过诸葛亮这里面集成学习就是将单一的算法弱弱结合算法融合用投票给特征值加权重AdaBoost集成学习算法通过迭代训练一系列弱分类器,给予分类错误样本更高权重,使得后续弱分类器更关注这些样本,然后将这些弱分类器线性组合成强分类器,提高整体分类性能。(一)投票机制投票是一种直观且常用的算法融合策略。在多分类问题中,假设有多个分类器对同一数据进行分类判断。每个分类器
- 深度学习 | pytorch + torchvision + python 版本对应及环境安装
zfgfdgbhs
深度学习pythonpytorch
目录一、版本对应二、安装命令(pip)1.版本(1)v2.5.1~v2.0.0(2)v1.13.1~v1.11.0(3)v1.10.1~v1.7.02.安装全过程(1)选择版本(2)安装结果参考文章一、版本对应下表来自pytorch的github官方文档:pytorch/vision:Datasets,TransformsandModelsspecifictoComputerVisionpytor
- 一文讲清楚深度学习和机器学习
平凡而伟大.
机器学习人工智能深度学习机器学习人工智能
目录1.定义机器学习(MachineLearning,ML)深度学习(DeepLearning,DL)2.工作原理机器学习深度学习3.应用场景机器学习深度学习4.主要区别5.为什么选择深度学习?6.总结深度学习和机器学习是人工智能(AI)领域中两个密切相关但有所区别的概念。要清楚地解释它们之间的关系,我们可以从定义、工作原理、应用场景以及两者的主要区别等方面进行探讨。1.定义机器学习(Machin
- DeepSeek:智能搜索与分析的新纪元
XRC2231
学习
在人工智能浪潮席卷全球的今天,DeepSeek如同一颗璀璨的新星,以其独特的魅力和强大的功能,在AI领域脱颖而出。DeepSeek,这一基于深度学习和数据挖掘技术的智能搜索与分析系统,不仅重新定义了搜索引擎的边界,更以其卓越的性能和广泛的应用场景,为全球用户带来了前所未有的智能体验。本文将从DeepSeek的定义、特点、应用场景、优势等方面进行全面而深入的介绍,带您领略这一新兴技术的独特魅力。一、
- AI模型技术演进与行业应用图谱
智能计算研究中心
其他
内容概要当前AI模型技术正经历从基础架构到行业落地的系统性革新。主流深度学习框架如TensorFlow和PyTorch持续优化动态计算图与分布式训练能力,而MXNet凭借高效的异构计算支持在边缘场景崭露头角。与此同时,模型压缩技术通过量化和知识蒸馏将参数量降低60%-80%,联邦学习则通过加密梯度交换实现多机构数据协同训练。在应用层面,医疗诊断模型通过迁移学习在CT影像分类任务中达到98.2%的准
- 使用Jupyter Notebook进行深度学习编程 - 深度学习教程
shandianfk_com
ChatGPTAIjupyter深度学习ide
大家好,今天我们要聊聊如何使用JupyterNotebook进行深度学习编程。深度学习是人工智能领域中的一项重要技术,通过模仿人脑神经网络的方式进行学习和分析。JupyterNotebook作为一个强大的工具,可以帮助我们轻松地进行深度学习编程,尤其适合初学者和研究人员。本文将带领大家一步步了解如何在JupyterNotebook中开展深度学习项目。一、什么是JupyterNotebook?Jup
- 深度学习 Deep Learning 第8章 深度学习优化
odoo中国
AI编程人工智能深度学习人工智能优化
深度学习第8章深度学习的优化章节概述本章深入探讨了深度学习中的优化技术,旨在解决模型训练过程中面临的各种挑战。优化是深度学习的核心环节,直接关系到模型的训练效率和最终性能。本章首先介绍了优化在深度学习中的特殊性,然后详细讨论了多种优化算法,包括随机梯度下降(SGD)、动量法、Nesterov动量法、AdaGrad、RMSProp和Adam等。此外,还探讨了参数初始化策略、自适应学习率方法以及二阶优
- 景联文科技提供高质量文本标注服务,驱动AI技术发展
景联文科技
科技人工智能
文本标注是指在原始文本数据上添加标签的过程,这些标签可以用来指示特定的实体、关系、事件等信息,以帮助计算机理解和处理这些数据。文本标注是自然语言处理(NLP)领域的一个重要环节,它通过为文本的不同部分提供具体的含义和上下文信息,增强机器学习和深度学习模型对文本内容的理解能力。标注类型情感分析情感极性:确定文本表达的情感倾向,如正面、负面或中立。强度评估:衡量情感的强烈程度,从轻微到极端不等。命名实
- 深度学习篇---对角矩阵&矩阵的秩&奇异矩阵
Ronin-Lotus
程序代码篇深度学习篇深度学习矩阵人工智能线性代数
文章目录前言一、对角矩阵(DiagonalMatrix)1.1定义1.2特性行列式运算简化1.3应用领域深度学习信号处理量子力学经济学二、矩阵的秩(RankofaMatrix)2.1定义2.2特性满秩降秩影响2.3应用领域深度学习图像压缩推荐系统控制理论三、奇异矩阵(SingularMatrix)3.1定义3.2特性秩不足行列式为零3.3应用领域深度学习正则化损失函数结构工程统计学数值计算四、跨领
- DeepSeek、Grok 与 ChatGPT 三巨头:技术架构与应用场景的全方位解析
云策量化
Deepseekchatgptdeepseekgrok
前言在当今人工智能领域,DeepSeek、Grok和ChatGPT作为语言模型的三巨头,各自凭借独特的技术架构和广泛的应用场景,在自然语言处理领域占据着重要地位。本文将对这三款模型的技术架构和应用场景进行全方位解析,以期为读者提供深入的了解和有价值的参考。一、技术架构(一)DeepSeekDeepSeek是由DeepSeek团队开发的一款大型语言模型,其技术架构基于深度学习中的Transforme
- OpenCV 4.2.0与扩展模块安装与应用指南
土城三富
本文还有配套的精品资源,点击获取简介:OpenCV4.2.0是一个先进的计算机视觉库,包含了图像处理、计算机视觉和机器学习算法。本压缩包包含OpenCV核心库和扩展模块(opencv_contrib),版本均为4.2.0。该版本引入了性能增强、API优化以及对深度学习框架和硬件加速技术的更新支持。扩展模块提供了额外的实验性算法和功能,有助于研究和开发新算法。指南详细介绍了如何安装和配置这些库,并提
- 介于YOLOv5的裂缝识别系统
程序员~小强
YOLO
介于YOLOv5的裂缝识别系统在现代工业中,裂缝监测是的保障设施安全的重要环节。我们公司的新项目——基于YOLOv5的裂缝识别系统,将为您提供高效、精准的解决方案,助力各类工程项目的质量管理。系统优势我们的裂缝识别系统借助YOLOv5进行深度学习,经过精心训练,拥有强大的图像识别能力。只需简单的步骤,您就能将复杂的裂缝检测转化为轻松的操作,让分析变得更加简单、高效。核心功能图片上传与场景选择用户可
- 使用Dall-E生成图像:文本到图像的魔力
shuoac
计算机视觉人工智能python
使用Dall-E生成图像:文本到图像的魔力技术背景介绍Dall-E是OpenAI开发的一个强大的文本到图像生成模型,它能够根据自然语言描述创造出全新的数字图像。这一技术基于深度学习的方法,使得创意与AI图像生成的结合更具可能性。本文将介绍如何调用Dall-EAPI来生成图像,从而使开发者能够将这一技术应用到自己的项目中。核心原理解析Dall-E利用大型语言模型(LLM)从用户提供的文本描述中提取详
- 【深度学习|地学应用】滑坡灾害早期隐患的概念、特征及识别方法,同时解释其与人工边坡、滑坡易发性之间的联系与区别。
985小水博一枚呀
深度学习人工智能
【深度学习|地学应用】滑坡灾害早期隐患的概念、特征及识别方法,同时解释其与人工边坡、滑坡易发性之间的联系与区别。【深度学习|地学应用】滑坡灾害早期隐患的概念、特征及识别方法,同时解释其与人工边坡、滑坡易发性之间的联系与区别。文章目录【深度学习|地学应用】滑坡灾害早期隐患的概念、特征及识别方法,同时解释其与人工边坡、滑坡易发性之间的联系与区别。1.滑坡灾害早期隐患的概念与特征概念主要特征2.通过光学
- 给普通人看的深度学习说明书:用快递系统理解AI如何思考
嵌入式Jerry
PythonAI人工智能深度学习
第一章:理解AI的思维方式(快递版)1.1快递分拣站的故事假设你管理一个快递分拣站:传统方法:手动制定规则(比如根据邮编分拣)机器学习:观察老员工的分拣记录,总结规律深度学习:搭建自动分拣流水线,自主发现隐藏规则1.2神经网络就像智能分拣机传送带(输入层):接收包裹信息(图片像素/文字等)#就像扫描快递单input_data=[0.2,0.7,0.1]#归一化后的特征数据分拣工人(隐藏层):每个工
- 解析大模型归一化:提升训练稳定性和性能的关键技术
秋声studio
口语化解析深度学习人工智能大模型归一化
引言在深度学习领域,特别是在处理大型神经网络模型时,归一化(Normalization)是一项至关重要的技术。它可以提高模型的训练稳定性和性能,在加速收敛方面发挥了重要作用。本文将深入探讨大模型归一化的原理、常见方法及其应用场景,并结合实际案例和代码示例进行说明。一、归一化的作用与理论基础归一化的主要目的是为了提高模型的训练稳定性和性能。具体来说,归一化有以下几个关键作用:提高训练稳定性:在神经网
- 深入解析深度学习中的过拟合与欠拟合诊断、解决与工程实践
古月居GYH
深度学习人工智能
一、引言:模型泛化能力的核心挑战在深度学习模型开发中,欠拟合与过拟合是影响泛化能力的两个核心矛盾。据GoogleBrain研究统计,工业级深度学习项目中有63%的失败案例与这两个问题直接相关。本文将从基础概念到工程实践,系统解析其本质特征、诊断方法及解决方案,并辅以可复现的代码案例。二、核心概念与通熟易懂解释简单而言,欠拟合是指模型不能在训练集上获得足够低的误差。换句换说,就是模型复杂度低,模型在
- Umi-OCR 实践教程:离线、免费、高效的图像文字识别工具
几道之旅
人工智能智能体及数字员工ocr人工智能
一、工具简介Umi-OCR是一款开源、免费且支持离线运行的OCR(光学字符识别)工具,适用于Windows和Linux系统。它基于深度学习技术,能够高效提取图像中的文字,支持多语言识别、批量处理、截屏识别等功能,尤其适合对隐私敏感或网络受限的场景。核心亮点:离线运行:无需联网,保护隐私。多引擎支持:提供Paddle(高性能)和Rapid(低配兼容)两种引擎。批量处理:支持图片、PDF、电子书等多格
- 基于ChatGPT、GIS与Python机器学习的地质灾害风险评估、易发性分析、信息化建库及灾后重建高级实践
weixin_贾
防洪评价风险评估滑坡泥石流地质灾害
第一章、ChatGPT、DeepSeek大语言模型提示词与地质灾害基础及平台介绍【基础实践篇】1、什么是大模型?大模型(LargeLanguageModel,LLM)是一种基于深度学习技术的大规模自然语言处理模型。代表性大模型:GPT-4、BERT、T5、ChatGPT等。特点:多任务能力:可以完成文本生成、分类、翻译、问答等任务。上下文理解:能理解复杂的上下文信息。广泛适配性:适合科研、教育、行
- 矩阵求逆(JAVA)利用伴随矩阵
qiuwanchi
利用伴随矩阵求逆矩阵
package gaodai.matrix;
import gaodai.determinant.DeterminantCalculation;
import java.util.ArrayList;
import java.util.List;
import java.util.Scanner;
/**
* 矩阵求逆(利用伴随矩阵)
* @author 邱万迟
- 单例(Singleton)模式
aoyouzi
单例模式Singleton
3.1 概述 如果要保证系统里一个类最多只能存在一个实例时,我们就需要单例模式。这种情况在我们应用中经常碰到,例如缓存池,数据库连接池,线程池,一些应用服务实例等。在多线程环境中,为了保证实例的唯一性其实并不简单,这章将和读者一起探讨如何实现单例模式。 3.2
- [开源与自主研发]就算可以轻易获得外部技术支持,自己也必须研发
comsci
开源
现在国内有大量的信息技术产品,都是通过盗版,免费下载,开源,附送等方式从国外的开发者那里获得的。。。。。。
虽然这种情况带来了国内信息产业的短暂繁荣,也促进了电子商务和互联网产业的快速发展,但是实际上,我们应该清醒的看到,这些产业的核心力量是被国外的
- 页面有两个frame,怎样点击一个的链接改变另一个的内容
Array_06
UIXHTML
<a src="地址" targets="这里写你要操作的Frame的名字" />搜索
然后你点击连接以后你的新页面就会显示在你设置的Frame名字的框那里
targerts="",就是你要填写目标的显示页面位置
=====================
例如:
<frame src=&
- Struts2实现单个/多个文件上传和下载
oloz
文件上传struts
struts2单文件上传:
步骤01:jsp页面
<!--在进行文件上传时,表单提交方式一定要是post的方式,因为文件上传时二进制文件可能会很大,还有就是enctype属性,这个属性一定要写成multipart/form-data,不然就会以二进制文本上传到服务器端-->
<form action="fileUplo
- 推荐10个在线logo设计网站
362217990
logo
在线设计Logo网站。
1、http://flickr.nosv.org(这个太简单)
2、http://www.logomaker.com/?source=1.5770.1
3、http://www.simwebsol.com/ImageTool
4、http://www.logogenerator.com/logo.php?nal=1&tpl_catlist[]=2
5、ht
- jsp上传文件
香水浓
jspfileupload
1. jsp上传
Notice:
1. form表单 method 属性必须设置为 POST 方法 ,不能使用 GET 方法
2. form表单 enctype 属性需要设置为 multipart/form-data
3. form表单 action 属性需要设置为提交到后台处理文件上传的jsp文件地址或者servlet地址。例如 uploadFile.jsp 程序文件用来处理上传的文
- 我的架构经验系列文章 - 前端架构
agevs
JavaScriptWeb框架UIjQuer
框架层面:近几年前端发展很快,前端之所以叫前端因为前端是已经可以独立成为一种职业了,js也不再是十年前的玩具了,以前富客户端RIA的应用可能会用flash/flex或是silverlight,现在可以使用js来完成大部分的功能,因此js作为一门前端的支撑语言也不仅仅是进行的简单的编码,越来越多框架性的东西出现了。越来越多的开发模式转变为后端只是吐json的数据源,而前端做所有UI的事情。MVCMV
- android ksoap2 中把XML(DataSet) 当做参数传递
aijuans
android
我的android app中需要发送webservice ,于是我使用了 ksop2 进行发送,在测试过程中不是很顺利,不能正常工作.我的web service 请求格式如下
[html]
view plain
copy
<Envelope xmlns="http://schemas.
- 使用Spring进行统一日志管理 + 统一异常管理
baalwolf
spring
统一日志和异常管理配置好后,SSH项目中,代码以往散落的log.info() 和 try..catch..finally 再也不见踪影!
统一日志异常实现类:
[java]
view plain
copy
package com.pilelot.web.util;
impor
- Android SDK 国内镜像
BigBird2012
android sdk
一、镜像地址:
1、东软信息学院的 Android SDK 镜像,比配置代理下载快多了。
配置地址, http://mirrors.neusoft.edu.cn/configurations.we#android
2、北京化工大学的:
IPV4:ubuntu.buct.edu.cn
IPV4:ubuntu.buct.cn
IPV6:ubuntu.buct6.edu.cn
- HTML无害化和Sanitize模块
bijian1013
JavaScriptAngularJSLinkySanitize
一.ng-bind-html、ng-bind-html-unsafe
AngularJS非常注重安全方面的问题,它会尽一切可能把大多数攻击手段最小化。其中一个攻击手段是向你的web页面里注入不安全的HTML,然后利用它触发跨站攻击或者注入攻击。
考虑这样一个例子,假设我们有一个变量存
- [Maven学习笔记二]Maven命令
bit1129
maven
mvn compile
compile编译命令将src/main/java和src/main/resources中的代码和配置文件编译到target/classes中,不会对src/test/java中的测试类进行编译
MVN编译使用
maven-resources-plugin:2.6:resources
maven-compiler-plugin:2.5.1:compile
&nbs
- 【Java命令二】jhat
bit1129
Java命令
jhat用于分析使用jmap dump的文件,,可以将堆中的对象以html的形式显示出来,包括对象的数量,大小等等,并支持对象查询语言。 jhat默认开启监听端口7000的HTTP服务,jhat是Java Heap Analysis Tool的缩写
1. 用法:
[hadoop@hadoop bin]$ jhat -help
Usage: jhat [-stack <bool&g
- JBoss 5.1.0 GA:Error installing to Instantiated: name=AttachmentStore state=Desc
ronin47
进到类似目录 server/default/conf/bootstrap,打开文件 profile.xml找到: Xml代码<bean
name="AttachmentStore"
class="org.jboss.system.server.profileservice.repository.AbstractAtta
- 写给初学者的6条网页设计安全配色指南
brotherlamp
UIui自学ui视频ui教程ui资料
网页设计中最基本的原则之一是,不管你花多长时间创造一个华丽的设计,其最终的角色都是这场秀中真正的明星——内容的衬托
我仍然清楚地记得我最早的一次美术课,那时我还是一个小小的、对凡事都充满渴望的孩子,我摆放出一大堆漂亮的彩色颜料。我仍然记得当我第一次看到原色与另一种颜色混合变成第二种颜色时的那种兴奋,并且我想,既然两种颜色能创造出一种全新的美丽色彩,那所有颜色
- 有一个数组,每次从中间随机取一个,然后放回去,当所有的元素都被取过,返回总共的取的次数。写一个函数实现。复杂度是什么。
bylijinnan
java算法面试
import java.util.Random;
import java.util.Set;
import java.util.TreeSet;
/**
* http://weibo.com/1915548291/z7HtOF4sx
* #面试题#有一个数组,每次从中间随机取一个,然后放回去,当所有的元素都被取过,返回总共的取的次数。
* 写一个函数实现。复杂度是什么
- struts2获得request、session、application方式
chiangfai
application
1、与Servlet API解耦的访问方式。
a.Struts2对HttpServletRequest、HttpSession、ServletContext进行了封装,构造了三个Map对象来替代这三种对象要获取这三个Map对象,使用ActionContext类。
----->
package pro.action;
import java.util.Map;
imp
- 改变python的默认语言设置
chenchao051
python
import sys
sys.getdefaultencoding()
可以测试出默认语言,要改变的话,需要在python lib的site-packages文件夹下新建:
sitecustomize.py, 这个文件比较特殊,会在python启动时来加载,所以就可以在里面写上:
import sys
sys.setdefaultencoding('utf-8')
&n
- mysql导入数据load data infile用法
daizj
mysql导入数据
我们常常导入数据!mysql有一个高效导入方法,那就是load data infile 下面来看案例说明
基本语法:
load data [low_priority] [local] infile 'file_name txt' [replace | ignore]
into table tbl_name
[fields
[terminated by't']
[OPTI
- phpexcel导入excel表到数据库简单入门示例
dcj3sjt126com
PHPExcel
跟导出相对应的,同一个数据表,也是将phpexcel类放在class目录下,将Excel表格中的内容读取出来放到数据库中
<?php
error_reporting(E_ALL);
set_time_limit(0);
?>
<html>
<head>
<meta http-equiv="Content-Type"
- 22岁到72岁的男人对女人的要求
dcj3sjt126com
22岁男人对女人的要求是:一,美丽,二,性感,三,有份具品味的职业,四,极有耐性,善解人意,五,该聪明的时候聪明,六,作小鸟依人状时尽量自然,七,怎样穿都好看,八,懂得适当地撒娇,九,虽作惊喜反应,但看起来自然,十,上了床就是个无条件荡妇。 32岁的男人对女人的要求,略作修定,是:一,入得厨房,进得睡房,二,不必服侍皇太后,三,不介意浪漫蜡烛配盒饭,四,听多过说,五,不再傻笑,六,懂得独
- Spring和HIbernate对DDM设计的支持
e200702084
DAO设计模式springHibernate领域模型
A:数据访问对象
DAO和资源库在领域驱动设计中都很重要。DAO是关系型数据库和应用之间的契约。它封装了Web应用中的数据库CRUD操作细节。另一方面,资源库是一个独立的抽象,它与DAO进行交互,并提供到领域模型的“业务接口”。
资源库使用领域的通用语言,处理所有必要的DAO,并使用领域理解的语言提供对领域模型的数据访问服务。
- NoSql 数据库的特性比较
geeksun
NoSQL
Redis 是一个开源的使用ANSI C语言编写、支持网络、可基于内存亦可持久化的日志型、Key-Value数据库,并提供多种语言的API。目前由VMware主持开发工作。
1. 数据模型
作为Key-value型数据库,Redis也提供了键(Key)和值(Value)的映射关系。除了常规的数值或字符串,Redis的键值还可以是以下形式之一:
Lists (列表)
Sets
- 使用 Nginx Upload Module 实现上传文件功能
hongtoushizi
nginx
转载自: http://www.tuicool.com/wx/aUrAzm
普通网站在实现文件上传功能的时候,一般是使用Python,Java等后端程序实现,比较麻烦。Nginx有一个Upload模块,可以非常简单的实现文件上传功能。此模块的原理是先把用户上传的文件保存到临时文件,然后在交由后台页面处理,并且把文件的原名,上传后的名称,文件类型,文件大小set到页面。下
- spring-boot-web-ui及thymeleaf基本使用
jishiweili
springthymeleaf
视图控制层代码demo如下:
@Controller
@RequestMapping("/")
public class MessageController {
private final MessageRepository messageRepository;
@Autowired
public MessageController(Mes
- 数据源架构模式之活动记录
home198979
PHP架构活动记录数据映射
hello!架构
一、概念
活动记录(Active Record):一个对象,它包装数据库表或视图中某一行,封装数据库访问,并在这些数据上增加了领域逻辑。
对象既有数据又有行为。活动记录使用直截了当的方法,把数据访问逻辑置于领域对象中。
二、实现简单活动记录
活动记录在php许多框架中都有应用,如cakephp。
<?php
/**
* 行数据入口类
*
- Linux Shell脚本之自动修改IP
pda158
linuxcentosDebian脚本
作为一名
Linux SA,日常运维中很多地方都会用到脚本,而服务器的ip一般采用静态ip或者MAC绑定,当然后者比较操作起来相对繁琐,而前者我们可以设置主机名、ip信息、网关等配置。修改成特定的主机名在维护和管理方面也比较方便。如下脚本用途为:修改ip和主机名等相关信息,可以根据实际需求修改,举一反三!
#!/bin/sh
#auto Change ip netmask ga
- 开发环境搭建
独浮云
eclipsejdktomcat
最近在开发过程中,经常出现MyEclipse内存溢出等错误,需要重启的情况,好麻烦。对于一般的JAVA+TOMCAT项目开发,其实没有必要使用重量级的MyEclipse,使用eclipse就足够了。尤其是开发机器硬件配置一般的人。
&n
- 操作日期和时间的工具类
vipbooks
工具类
大家好啊,好久没有来这里发文章了,今天来逛逛,分享一篇刚写不久的操作日期和时间的工具类,希望对大家有所帮助。
/*
* @(#)DataFormatUtils.java 2010-10-10
*
* Copyright 2010 BianJing,All rights reserved.
*/
package test;
impor