OpenCV学习笔记-霍夫变换圆检测

 

霍夫圆变换的基本原理和霍夫线变换类似,只是点对应的二维极径极角空间被三维的圆心点x, y还有半径r空间取代。

 

 

 

对直线来说,一条直线能由参数极径极角(r, θ)表示。而对圆来说,我们需要三个参数来表示一个圆,由于比直线检测多出一个维度,使得标准的霍夫圆检测需要大量的内存且速度比较慢。出于对运算效率的考虑,OpenCV实现的霍夫圆检测是一个比标准霍夫圆检测更为灵活的检测方法:霍夫梯度法,也叫2-1霍夫变换(21HT)。

 

 

 

霍夫梯度法:

它的原理依据是圆心一定是在圆上的每个点的模向量上,这些圆上点模向量的交点就是圆心,霍夫梯度法的第一步就是找到这些圆心,这样三维的累加平面就又转化为二维累加平面。第二步根据所有候选中心的边缘非0像素对其的支持程度来确定半径。

 

 

实现原理就是首先对图像进行模糊降噪,进行canny边缘检测,然后考虑边缘图像中的每一个非0点的局部梯度,通过Sebol()函数计算x, y方向上的sobel一阶导数得到梯度,利用得到的梯度,由斜率指定直线上的每一个点都在累加器中被累加,然后从累加器中这些点中选择候选的中心画圆。

 

 

 

执行步骤:

1、执行均值偏移滤波,消除噪声

 

 

 

2、转成灰度图

 

3、canny边缘检测

4、执行霍夫圆检测

 

5、绘制出检测到的圆

 

 

第一步和第二步可以根据实际情况调整顺序,但一定要消除噪声。

 

具体代码

 

import cv2 as cv
import numpy as np
from matplotlib import pyplot as plt

def Hough_circle_demo(img):
    #均值偏移滤波
    dst = cv.pyrMeanShiftFiltering(img, 10, 120)
    cv.imshow('filter', dst)
    #转成灰度图
    gray = cv.cvtColor(dst, cv.COLOR_BGR2GRAY)
    cv.imshow('gray', gray)
    #canny边缘检测
    edges = cv.Canny(gray, 50, 150, apertureSize=3)
    cv.imshow('canny', edges)
    #执行霍夫圆检测
    circles = cv.HoughCircles(edges, cv.HOUGH_GRADIENT, 1, 20, param1=50, param2=30, minRadius=0, maxRadius=0)
    '''
    HoughCircles(image, method, dp, minDist, circles=None, param1=None, param2=None, minRadius=None, maxRadius=None)
    image: 输入图像
    method: 检测方法 
    minDist: 检测到圆心之间的最小距离 img.rows/8
    circles: 返回结果 (x,y,r)
    param1: canny边缘函数的高阈值
    param2: 圆心检测阈值
    minRadius: 能检测到的最小圆半径
    maxRadius: 能检测到的最大圆半径
    '''
    circles = np.uint16(np.around(circles))
    #绘制出检测到的圆
    for i in circles[0, :]:
        cv.circle(img, (i[0], i[1]), i[2], (0, 0, 255), 1)
        cv.circle(img, (i[0], i[1]), 2, (0, 255, 0), 2)
    cv.imshow('circles', img)


img = cv.imread('img/target.jpg')
cv.namedWindow('img',cv.WINDOW_AUTOSIZE)
cv.imshow('img',img)

Hough_circle_demo(img)

cv.waitKey(0)
cv.destroyAllWindows()

 

 

效果图对比:

 

cv.pyrMeanShiftFiltering(img, 10, 120),进行了canny边缘检测的结果

 

 

OpenCV学习笔记-霍夫变换圆检测_第1张图片

 

 

 

cv.pyrMeanShiftFiltering(img, 10, 100),执行了canny边缘检测

 

OpenCV学习笔记-霍夫变换圆检测_第2张图片

 

 

 

 

cv.pyrMeanShiftFiltering(img, 10, 100),没有执行canny边缘检测

OpenCV学习笔记-霍夫变换圆检测_第3张图片

 

通过三种结果的对比,我们可以看出执行了canny边缘检测的效果更好,而不用的模糊效果得到的结果也不同,所以在以后的操作中,一定要注意。

你可能感兴趣的:(#,OpenCV-Python,python,#,OpenCV学习笔记)