augmentation.py
用于翻转的数据增强
import cv2
import math
import numpy as np
import os
import pdb
import xml.etree.ElementTree as ET
class ImgAugemention():
def __init__(self):
self.angle = 90
# rotate_img
def rotate_image(self, src, angle, scale=1.):
w = src.shape[1]
h = src.shape[0]
# convet angle into rad
rangle = np.deg2rad(angle) # angle in radians
# calculate new image width and height
nw = (abs(np.sin(rangle)*h) + abs(np.cos(rangle)*w))*scale
nh = (abs(np.cos(rangle)*h) + abs(np.sin(rangle)*w))*scale
# ask OpenCV for the rotation matrix
rot_mat = cv2.getRotationMatrix2D((nw*0.5, nh*0.5), angle, scale)
# calculate the move from the old center to the new center combined
# with the rotation
rot_move = np.dot(rot_mat, np.array([(nw-w)*0.5, (nh-h)*0.5, 0]))
# the move only affects the translation, so update the translation
# part of the transform
rot_mat[0, 2] += rot_move[0]
rot_mat[1, 2] += rot_move[1]
# map
return cv2.warpAffine(
src, rot_mat, (int(math.ceil(nw)), int(math.ceil(nh))),
flags=cv2.INTER_LANCZOS4)
def rotate_xml(self, src, xmin, ymin, xmax, ymax, angle, scale=1.):
w = src.shape[1]
h = src.shape[0]
rangle = np.deg2rad(angle) # angle in radians
# now calculate new image width and height
# get width and heigh of changed image
nw = (abs(np.sin(rangle)*h) + abs(np.cos(rangle)*w))*scale
nh = (abs(np.cos(rangle)*h) + abs(np.sin(rangle)*w))*scale
# ask OpenCV for the rotation matrix
rot_mat = cv2.getRotationMatrix2D((nw*0.5, nh*0.5), angle, scale)
# calculate the move from the old center to the new center combined
# with the rotation
rot_move = np.dot(rot_mat, np.array([(nw-w)*0.5, (nh-h)*0.5, 0]))
# the move only affects the translation, so update the translation
# part of the transform
rot_mat[0, 2] += rot_move[0]
rot_mat[1, 2] += rot_move[1]
# rot_mat: the final rot matrix
# get the four center of edges in the initial martix,and convert the coord
point1 = np.dot(rot_mat, np.array([(xmin+xmax)/2, ymin, 1]))
point2 = np.dot(rot_mat, np.array([xmax, (ymin+ymax)/2, 1]))
point3 = np.dot(rot_mat, np.array([(xmin+xmax)/2, ymax, 1]))
point4 = np.dot(rot_mat, np.array([xmin, (ymin+ymax)/2, 1]))
# concat np.array
concat = np.vstack((point1, point2, point3, point4))
# change type
concat = concat.astype(np.int32)
print(concat)
rx, ry, rw, rh = cv2.boundingRect(concat)
return rx, ry, rw, rh
def process_img(self, imgs_path, xmls_path, img_save_path, xml_save_path, angle_list):
# assign the rot angles
for angle in angle_list:
for img_name in os.listdir(imgs_path):
# split filename and suffix
n, s = os.path.splitext(img_name)
# for the sake of use yol model, only process '.jpg'
if s == ".jpg":
img_path = os.path.join(imgs_path, img_name)
img = cv2.imread(img_path)
rotated_img = self.rotate_image(img, angle)
# 写入图像
cv2.imwrite(img_save_path + n + "_" + str(angle) + "d.jpg", rotated_img)
print("log: [%sd] %s is processed." % (angle, img))
xml_url = img_name.split('.')[0] + '.xml'
xml_path = os.path.join(xmls_path, xml_url)
tree = ET.parse(xml_path)
root = tree.getroot()
for box in root.iter('bndbox'):
xmin = float(box.find('xmin').text)
ymin = float(box.find('ymin').text)
xmax = float(box.find('xmax').text)
ymax = float(box.find('ymax').text)
x, y, w, h = self.rotate_xml(img, xmin, ymin, xmax, ymax, angle)
# change the coord
box.find('xmin').text = str(x)
box.find('ymin').text = str(y)
box.find('xmax').text = str(x+w)
box.find('ymax').text = str(y+h)
box.set('updated', 'yes')
# write into new xml
tree.write(xml_save_path + n + "_" + str(angle) + "d.xml")
print("[%s] %s is processed." % (angle, img_name))
if __name__ == '__main__':
img_aug = ImgAugemention()
imgs_path = 'C:/Users/huan4/Desktop/Python/VOC2007/JPEGImages/'
xmls_path = 'C:/Users/huan4/Desktop/Python/VOC2007/Annotations/'
img_save_path = 'C:/Users/huan4/Desktop/Python/tool/JPEGImages/'
xml_save_path = 'C:/Users/huan4/Desktop/Python/tool/Annotations/'
angle_list = [90, 120, 150, 210, 240, 300]
img_aug.process_img(imgs_path, xmls_path, img_save_path, xml_save_path, angle_list)
代表分别对所有图片旋转90°,120°,150°,210°,300°,图片数量扩增5倍,可以任意修改你想旋转的角度和数量。