大数据———Flume与Kafka整合

环境配置

名称 版本 下载地址
Centos 7.0 64x 百度
Flume 1.8.0 http://flume.apache.org/download.html
Kafka 2.11 http://mirror.bit.edu.cn/apache/kafka/1.0.0/kafka_2.11-1.0.0.tgz

Flume配置

  • 零基础的请查看:大数据———Flume使用
  • 配置文件:
spooldir.sources= eventDir
spooldir.channels= memoryChannel
spooldir.sinks= eventHDFS

#spooldir.sources.eventDir.type= spooldir
#spooldir.sources.eventDir.spoolDir=/home/hadoop/spooldir
#spooldir.sources.eventDir.fileHeader= true

spooldir.channels.memoryChannel.type= memory
spooldir.channels.memoryChannel.capacity= 10000
spooldir.channels.memoryChannel.transactioncapacity= 1000000

spooldir.sources.eventDir.type=netcat
spooldir.sources.eventDir.bind=192.168.110.131
spooldir.sources.eventDir.port=44444

spooldir.sinks.eventHDFS.type = org.apache.flume.sink.kafka.KafkaSink
spooldir.sinks.eventHDFS.kafka.topic = test1
spooldir.sinks.eventHDFS.kafka.bootstrap.servers = localhost:9092

#spooldir.sinks.eventHDFS.type= logger
#spooldir.sinks.eventHDFS.hdfs.fileType= DataStream
#spooldir.sinks.eventHDFS.hdfs.path=/user/hadoop/events
#spooldir.sinks.eventHDFS.hdfs.writeFormat= Text
#spooldir.sinks.eventHDFS.hdfs.batchSize=10000

spooldir.sources.eventDir.channels= memoryChannel
spooldir.sinks.eventHDFS.channel= memoryChannel

:ip地址和端口和自己的虚拟机相同

Kafka配置

  • 零基础的请查看:大数据——Kafka学习使用(集群搭建)
  • 配置文件:
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements.  See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License.  You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# see kafka.server.KafkaConfig for additional details and defaults

############################# Server Basics #############################

# The id of the broker. This must be set to a unique integer for each broker.
broker.id=0

############################# Socket Server Settings #############################

# The address the socket server listens on. It will get the value returned from 
# java.net.InetAddress.getCanonicalHostName() if not configured.
#   FORMAT:
#     listeners = listener_name://host_name:port
#   EXAMPLE:
#     listeners = PLAINTEXT://your.host.name:9092
#listeners=PLAINTEXT://:9092

# Hostname and port the broker will advertise to producers and consumers. If not set, 
# it uses the value for "listeners" if configured.  Otherwise, it will use the value
# returned from java.net.InetAddress.getCanonicalHostName().
#advertised.listeners=PLAINTEXT://your.host.name:9092

# Maps listener names to security protocols, the default is for them to be the same. See the config documentation for more details
#listener.security.protocol.map=PLAINTEXT:PLAINTEXT,SSL:SSL,SASL_PLAINTEXT:SASL_PLAINTEXT,SASL_SSL:SASL_SSL

# The number of threads that the server uses for receiving requests from the network and sending responses to the network
num.network.threads=3

# The number of threads that the server uses for processing requests, which may include disk I/O
num.io.threads=8

# The send buffer (SO_SNDBUF) used by the socket server
socket.send.buffer.bytes=102400

# The receive buffer (SO_RCVBUF) used by the socket server
socket.receive.buffer.bytes=102400

# The maximum size of a request that the socket server will accept (protection against OOM)
socket.request.max.bytes=104857600


############################# Log Basics #############################

# A comma seperated list of directories under which to store log files
log.dirs=/tmp/kafka-logs

# The default number of log partitions per topic. More partitions allow greater
# parallelism for consumption, but this will also result in more files across
# the brokers.
num.partitions=1

# The number of threads per data directory to be used for log recovery at startup and flushing at shutdown.
# This value is recommended to be increased for installations with data dirs located in RAID array.
num.recovery.threads.per.data.dir=1

############################# Internal Topic Settings  #############################
# The replication factor for the group metadata internal topics "__consumer_offsets" and "__transaction_state"
# For anything other than development testing, a value greater than 1 is recommended for to ensure availability such as 3.
offsets.topic.replication.factor=1
transaction.state.log.replication.factor=1
transaction.state.log.min.isr=1

############################# Log Flush Policy #############################

# Messages are immediately written to the filesystem but by default we only fsync() to sync
# the OS cache lazily. The following configurations control the flush of data to disk.
# There are a few important trade-offs here:
#    1. Durability: Unflushed data may be lost if you are not using replication.
#    2. Latency: Very large flush intervals may lead to latency spikes when the flush does occur as there will be a lot of data to flush.
#    3. Throughput: The flush is generally the most expensive operation, and a small flush interval may lead to exceessive seeks.
# The settings below allow one to configure the flush policy to flush data after a period of time or
# every N messages (or both). This can be done globally and overridden on a per-topic basis.

# The number of messages to accept before forcing a flush of data to disk
#log.flush.interval.messages=10000

# The maximum amount of time a message can sit in a log before we force a flush
#log.flush.interval.ms=1000

############################# Log Retention Policy #############################

# The following configurations control the disposal of log segments. The policy can
# be set to delete segments after a period of time, or after a given size has accumulated.
# A segment will be deleted whenever *either* of these criteria are met. Deletion always happens
# from the end of the log.

# The minimum age of a log file to be eligible for deletion due to age
log.retention.hours=168

# A size-based retention policy for logs. Segments are pruned from the log unless the remaining
# segments drop below log.retention.bytes. Functions independently of log.retention.hours.
#log.retention.bytes=1073741824

# The maximum size of a log segment file. When this size is reached a new log segment will be created.
log.segment.bytes=1073741824

# The interval at which log segments are checked to see if they can be deleted according
# to the retention policies
log.retention.check.interval.ms=300000

############################# Zookeeper #############################

# Zookeeper connection string (see zookeeper docs for details).
# This is a comma separated host:port pairs, each corresponding to a zk
# server. e.g. "127.0.0.1:3000,127.0.0.1:3001,127.0.0.1:3002".
# You can also append an optional chroot string to the urls to specify the
# root directory for all kafka znodes.
zookeeper.connect=localhost:2181

# Timeout in ms for connecting to zookeeper
zookeeper.connection.timeout.ms=6000


############################# Group Coordinator Settings #############################

# The following configuration specifies the time, in milliseconds, that the GroupCoordinator will delay the initial consumer rebalance.
# The rebalance will be further delayed by the value of group.initial.rebalance.delay.ms as new members join the group, up to a maximum of max.poll.interval.ms.
# The default value for this is 3 seconds.
# We override this to 0 here as it makes for a better out-of-the-box experience for development and testing.
# However, in production environments the default value of 3 seconds is more suitable as this will help to avoid unnecessary, and potentially expensive, rebalances during application startup.

启动Kafka

  • 启动Kafka内置的Zookeeper:
    ./bin/zookeeper-server-start.sh config/zookeeper.properties

  • 启动Kafka:
    ./bin/kafka-server-start.sh config/server.properties
    server.properties为配置文件名称

  • 创建一个名为test的topic:
    ./bin/kafka-topics.sh --create --zookeeper localhost:2181 --replication-factor 1 --partitions 1 --topic test1

  • 查看topic是否创建成功:
    ./bin/kafka-topics.sh --list --zookeeper localhost:2181

  • 创建一个生产者(生产消息):
    ./bin/kafka-console-producer.sh --broker-list localhost:9092 --topic test1

  • 创建一个消费者(接受消息):
    ./bin/kafka-console-consumer.sh --bootstrap-server localhost:9092 --topic test1 --from-beginning

启动Flume 与Kafka对接##

  • 启动Flume:
    在apache-flume-1.8.0-bin 路径下运行:
    ./bin/flume-ng agent -n spooldir -c conf -f conf/spooldir.conf -Dflume.root.logger=INFO,console
    
  • 连接到主机发送消息
telnet  192.168.110.131  44444  hello world!(windows中运行的)

大数据———Flume与Kafka整合_第1张图片

  • kafka 消费端这边就可以接收到消息

到这里Flume与Kafka整合完毕。

更多文章:www.ipooli.com

扫码关注公众号《ipoo》
ipoo

你可能感兴趣的:(大数据)