- Java 大视界 -- Java 大数据文本分析与自然语言处理:从文本挖掘到智能对话
一只蜗牛儿
java大数据自然语言处理
在当今的信息化时代,数据成为了重要的资源。特别是文本数据,随处可见,如社交媒体、新闻网站、技术文档、客户反馈等,这些都包含着大量的潜在信息。因此,如何从海量的文本中提取有价值的信息,成为了大数据分析领域的重要课题。Java作为一种高效、灵活的编程语言,在大数据文本分析与自然语言处理(NLP)中发挥着至关重要的作用。本文将介绍如何利用Java开发大数据文本分析和自然语言处理(NLP)应用,带领你从文
- Hadoop分布式文件系统-HDFS架构
Fancs2024
hadoophadoophdfs
一、HDFS的简介HDFS全称HadoopDistributedFileSystem,是分布式文件管理系统。主要是为了解决大数据如何存储的问题,跟一般文件系统不同的是,它可以通过扩展服务器结点来扩充存储量,可以用低成本的硬件构建出支持高吞吐量的文件系统。二、HDFS的特点高容错性:一个HDFS集群会包含非常多的结点,HDFS将文件分块存储,并且会保存多个副本到不同的机器节点上以保证数据的安全,而且
- 科技赋能,商贸物流新速度 —— 智慧供应链商城加速企业成长
呆码科技
科技
科技赋能,商贸物流新速度——智慧供应链商城加速企业成长随着科技的飞速发展,AI(人工智能)、大数据、物联网等先进技术正深刻重塑着商贸物流行业,推动其向更高效、更智能、更环保的方向迈进。这些技术的应用不仅提升了物流效率,降低了运营成本,还增强了供应链的透明度和可控性,为商贸物流行业带来了前所未有的变革。智慧供应链商城是一个集成了AI、大数据、物联网等先进技术的综合服务平台,旨在通过科技手段提升物流效
- 国内优秀的FPGA设计公司主要分布在哪些城市?
博览鸿蒙
FPGAfpga开发
近年来,国内FPGA行业发展迅速,随着5G通信、人工智能、大数据等新兴技术的崛起,FPGA设计企业的需求也迎来了爆发式增长。很多技术人才在求职时都会考虑城市的行业分布和发展潜力。因此,国内优秀的FPGA设计公司主要分布在哪些城市?以下将对国内FPGA企业集中的城市进行梳理。北京北京在我国FPGA产业发展中有着重要地位,尤其在设计和应用领域有较大优势,形成了完整的研发和产业生态。目前,北京主要的产业
- MDX语言的语法糖
ByteBlossom666
包罗万象golang开发语言后端
MDX语言的语法糖及其应用分析引言在当今数据驱动的时代,大数据分析和数据可视化已成为企业决策中不可或缺的一部分。MDX(MultidimensionalExpressions,多维表达式)作为一门专为分析多维数据而设计的查询语言,广泛应用于商业智能(BI)工具中。随着技术的发展,MDX语言逐渐演变,形成了其独特的语法糖,以提高开发者的效率和可读性。本文将深入探讨MDX语言的语法糖特性及其在实际应用
- 大数据的一些基本概念
weixin_49536779
大数据数据分析数据库python
首先,大数据是什么?大数据是指数据集规模巨大且复杂,传统的数据处理软件无法高效处理它们。它是非常大的数据集。这种复杂性可能来自于数据的“3V”特性:体量(Volume)、多样性(Variety)和速度(Velocity)。体量(Volume)首先,什么是体量?体量指的是以PB(Petabytes)为单位的数据量,甚至是EB(Exabytes)。这种数据量远大于GB(Gigabytes)或TB(Te
- 利用E2B环境进行数据分析 - 创建一个简单的OpenAI Agent
srudfktuffk
数据分析数据挖掘python
在AI技术应用中,数据分析是一个关键环节。E2B的云环境为大模型(LLM)的运行提供了一个安全的运行时沙箱,非常适合用来构建代码解释器或进行高级数据分析。在这篇文章中,我们将介绍如何利用E2B的DataAnalysis沙箱,结合OpenAI的API,创建一个简化的自动化数据分析应用。技术背景介绍E2B的DataAnalysis沙箱能够安全地执行代码,是构建自动化数据分析工具的理想选择。该沙箱提供了
- TiDB 对 Hadoop 的影响:大数据时代的新选择
狮歌~资深攻城狮
tidb数据仓库数据分析数据库分布式
TiDB对Hadoop的影响:大数据时代的新选择随着大数据时代的到来,各种处理和存储海量数据的技术应运而生。Hadoop和TiDB都是这个时代的代表性技术,但它们的设计初衷、使用场景和应用方式却有所不同。那么,TiDB作为一个分布式数据库,它对传统的Hadoop生态系统产生了哪些影响呢?今天,我们就来聊聊这个话题。Hadoop简介:大数据的“老牌劲旅”首先,我们需要了解一下Hadoop的背景。Ha
- MPP(Massively Parallel Processing)是什么?它的特点是什么?
狮歌~资深攻城狮
数据仓库数据分析数据库分布式
MPP(MassivelyParallelProcessing)是什么?它的特点是什么?在信息化、数据化的今天,处理大规模数据成为了很多行业的关键能力。我们常常听到“大数据”和“数据处理”的词汇,而MMP(MassivelyParallelProcessing,大规模并行处理)正是帮助我们解决大数据处理的利器。那么,MPP究竟有什么特点,让它能够高效处理海量数据呢?1.什么是MPP?MPP的全称是
- 大语言模型原理与工程实践:网页数据
AI大模型应用之禅
计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
大语言模型原理与工程实践:网页数据1.背景介绍在当今信息爆炸的时代,网页数据成为了大数据的重要来源之一。网页数据不仅包含了丰富的文本信息,还包括了图像、视频、音频等多媒体内容。大语言模型(LargeLanguageModels,LLMs)作为自然语言处理(NLP)领域的前沿技术,能够从海量的网页数据中提取有价值的信息,进行文本生成、情感分析、问答系统等多种任务。大语言模型的成功离不开深度学习技术的
- Azure数据分析Power BI
SmallFatMan
#Azureazure数据分析microsoft服务器运维面试面试云计算
Azure数据分析PowerBI一、PowerBI简介二、PowerBI如何匹配角色三、PowerBI构建基块四、使用PowerBI服务一、PowerBI简介MicrosoftPowerBI是一系列的软件服务、应用和连接器,这些软件服务、应用和连接器协同工作,将不相关的数据源转化为合乎逻辑、视觉上逼真的交互式见解。不管你的数据是简单的MicrosoftExcel工作簿,还是基于云的数据仓库和本地混
- 利用MediaWikiDump解析和处理Wiki数据
srudfktuffk
python
MediaWikiXMLDumps包含了Wiki页面及其所有修订的内容,但不包括与站点相关的数据,比如用户帐户、图像和编辑日志。因此,虽然它们没有创建Wiki数据库的完整备份,却在处理Wiki内容时具有独特的价值。技术背景介绍MediaWiki是许多Wiki(例如Wikipedia)后台的开源软件。使用MediaWikiXMLDumps,你可以获得Wiki页面的详细修订历史记录。这在数据分析和内容
- Flink系列-2、Flink架构体系
技术武器库
大数据专栏flink架构jvm
版权声明:本文为博主原创文章,遵循CC4.0BY-SA版权协议,转载请附上原文出处链接和本声明。大数据系列文章目录官方网址:https://flink.apache.org/学习资料:https://flink-learning.org.cn/目录Flink中的重要角⾊Flink数据流编程模型Libraries支持Flink集群搭建Local本地模式(开发测试)Standalone-伪分布环境(开
- 【原创】大数据治理入门(5)《数据生命周期管理:从采集到归档》入门必看 高赞实用
精通代码大仙
数据库hadooppython大数据数据挖掘数据治理数据库python
数据生命周期管理:从采集到归档引言:数据生命周期的概念数据生命周期管理(DataLifecycleManagement,DLM)是指从数据的创建、使用、存储到最终归档或销毁的全过程管理。在大数据时代,企业需要通过对数据生命周期的全面管理,确保数据的可用性、安全性和合规性。本文将详细介绍数据生命周期的各个阶段,以及相应的管理策略和技术工具。各阶段介绍:采集、存储、处理、分析、归档数据采集(DataC
- Java 大视界 -- Java 与大数据分布式机器学习平台搭建(58)
青云交
大数据新视界Java大视界大数据分布式机器学习ApacheSparkHadoopApacheFlink平台搭建架构设计
亲爱的朋友们,热烈欢迎你们来到青云交的博客!能与你们在此邂逅,我满心欢喜,深感无比荣幸。在这个瞬息万变的时代,我们每个人都在苦苦追寻一处能让心灵安然栖息的港湾。而我的博客,正是这样一个温暖美好的所在。在这里,你们不仅能够收获既富有趣味又极为实用的内容知识,还可以毫无拘束地畅所欲言,尽情分享自己独特的见解。我真诚地期待着你们的到来,愿我们能在这片小小的天地里共同成长,共同进步。一、欢迎加入【福利社群
- 基于MRS-Hudi构建数据湖的典型应用场景介绍
华为云技术精粹
云计算华为云
一、传统数据湖存在的问题与挑战传统数据湖解决方案中,常用Hive来构建T+1级别的数据仓库,通过HDFS存储实现海量数据的存储与水平扩容,通过Hive实现元数据的管理以及数据操作的SQL化。虽然能够在海量批处理场景中取得不错的效果,但依然存在如下现状问题:问题一:不支持事务由于传统大数据方案不支持事务,有可能会读到未写完成的数据,造成数据统计错误。为了规避该问题,通常控制读写任务顺序调用,在保证写
- 软件测试丨Redis 的数据同步策略以及数据一致性保证
霍格沃兹测试开发学社测试人社区
redis数据库缓存软件测试测试开发
Redis以其键值存储的方式,为开发者提供了数据快速存取的能力。它不仅支持丰富的数据结构,如字符串、哈希、列表、集合等,而且提供了高效的数据同步与一致性保障机制。正因为如此,Redis被广泛应用于缓存、消息队列、实时数据分析等场景。接下来,我们将详细分析Redis的数据同步策略以及如何确保数据一致性。数据同步策略在理解Redis的数据同步策略之前,我们需要先了解Redis的基本架构。Redis是一
- MySQL、HBase 和 Elasticsearch:特点与区别详解
一休哥助手
mysqlhbaseelasticsearch
引言随着大数据和分布式计算的快速发展,数据库系统已从传统的关系型数据库(RDBMS)扩展到多种新型数据存储技术,包括NoSQL数据库和搜索引擎等。MySQL、HBase和Elasticsearch是其中三种非常常见的数据存储系统,它们在各自的领域都有着重要的应用。MySQL作为传统的关系型数据库,HBase则是一个分布式、可扩展的NoSQL数据库,而Elasticsearch则是一个分布式的搜索引
- AI代码生成器赋能房地产:ScriptEcho如何革新VR/AR房产浏览体验
前端
房地产行业正经历着深刻的变革。传统的房产浏览方式,例如平面图和实地看房,效率低下,用户体验差,难以满足现代消费者对信息获取和体验感日益增长的需求。虚拟现实(VR)和增强现实(AR)技术的兴起为解决这一痛点提供了新的途径,为消费者带来沉浸式、交互式的房产浏览体验。然而,VR/AR应用的开发却面临着诸多挑战,例如开发周期长、成本高、技术门槛高等。这时,一个强大的AI代码生成器,例如ScriptEcho
- CRM系统用户满意度调查:哪些品牌最受欢迎
随着国内CRM市场的快速发展,众多厂商纷纷推出各具特色的产品,以满足不同企业的需求。然而,面对琳琅满目的CRM系统,企业如何选择最适合自己的解决方案成为了一个亟待解决的问题。为了帮助企业更好地了解国内CRM市场的用户满意度情况,我们特别发起了本次调研,旨在揭示哪些品牌在市场上表现突出,赢得用户的广泛认可。本次调查通过问卷调查、用户访谈以及市场数据分析等多种方式,收集了来自不同规模、行业和地区的企业
- SRCA 证书免费考!2025 学习奋进,大显蛇通!
数据库
社区的小伙伴们,你们的新年学习计划已开启!Rocky为你精心准备了一份特别的礼物–一个为期一个月的学习计划与免费的SRCA考证机会,助你在新的一年成为StarRocks专家,在大数据征程上大显神通。以下是本次新年学习的内容与SRCA考试获取方式:学习目标通过系统的学习,让你迅速提升StarRocks知识基础与解决实际问题的能力,为你的职业发展打下坚实基础。学习方式大家可以根据Rocky规划的课程在
- svm python 模型绘图_1SVM处理数据并绘图
张炜大师傅
svmpython模型绘图
爬虫Python基础、数据分析扩展包Numpy、pandas、matplotlib,Python读取MySQL数据,Python爬虫及Scrapy框架,无监督机器学习算法聚类分析等,以及案例:互联网金融行业客户价值分析等。机器学习机器学习是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有
- Flink 的核心特点和概念
Ray.1998
大数据大数据数据分析数据仓库flink
Flink是一个流式处理框架,专注于高吞吐量、低延迟的数据流处理。它能处理无限流(即实时数据流)和有限流(批处理),具有很强的灵活性和可扩展性,广泛应用于实时数据分析、监控系统、数据处理平台等场景。下面是一些关于Flink的核心特点和概念:1.流处理和批处理流处理(StreamProcessing):Flink的核心就是流处理,它能够实时处理不断到达的数据流。Flink会将数据划分成时间窗口来处理
- 深入MapReduce——引入
黄雪超
大数据基础#深入MapReducemapreduce大数据hadoop
引入前面我们已经深入了HDFS的设计与实现,对于分布式系统也有了不错的理解。但HDFS仅仅解决了海量数据存储和读写的问题。但要想让数据产生价值,一定是需要从数据中挖掘出价值才行,这就需要我们拥有海量数据的计算处理能力。下面我们还是老样子,来数据一下要实现海量计算处理能力,有些什么核心痛点大数据计算核心痛点量级大在稍微大一点的互联网企业,需要计算处理的数据量都开始以PB计了。而传统的计算处理模型中,
- Kafka 迁移 AutoMQ 时 Flink 位点管理的挑战与解决方案
AutoMQ
云计算云原生Kafka消息计算大数据AWSAutoMQ阿里云腾讯云GCP
编辑导读:AutoMQ是一款与ApacheKafka100%完全兼容的新一代Kafka,可以做到至多10倍的成本降低和极速的弹性。凭借其与Kafka的完全兼容性可以与用户已有的Flink等大数据基础设施进行轻松整合。Flink是重要的流处理引擎,与Kafka有着密切的关系。本文重点介绍了当用户需要将生产Kafka集群迁移到AutoMQ时,如何处理好Flink的位点来确保整体迁移的平滑过渡。引言在云
- AI产品经理还不会数据挖掘❓看完这篇就够了
脱泥不tony
人工智能产品经理数据挖掘pythontensorflow开发语言llama
前言在数字化时代的浪潮中,AI产品经理正成为推动科技与商业融合的重要力量。然而,面对海量的数据,如何从中挖掘出有价值的信息,为AI产品的开发提供有力支持?这已成为AI产品经理必须面对的挑战。今天,我们就来探讨一下数据挖掘在AI产品经理工作中的重要性,以及如何通过掌握数据挖掘方法论,打造卓越的AI产品。一、数据挖掘:AI产品经理的必备技能在AI产品的世界中,大数据是构建一切的基础。无论是算法组件、知
- python数据分析与可视化
盆蒂
python开发语言
一、Python数据分析概述Python是一种解释型、交互式的编程语言,其设计理念强调代码的可读性和简洁性。Python的语法结构简单,支持面向对象、过程式和函数式三种编程范式,使得Python成为一种强大而灵活的编程语言。Python数据分析主要包括数据清洗、数据探索和数据可视化三个部分。数据清洗是数据分析的重要环节,主要是对数据进行预处理,包括缺失值处理、异常值处理、数据类型转换等。数据探索则
- 推荐项目:Kaggle - House Prices: Advanced Regression Techniques
秦贝仁Lincoln
推荐项目:Kaggle-HousePrices:AdvancedRegressionTechniques去发现同类优质开源项目:https://gitcode.com/在这个数字化的时代,数据分析已经成为各行各业不可或缺的技能,尤其在房地产领域,精准的房价预测能带来巨大的商业价值。这就是我们要向你推荐的开源项目——Kaggle-HousePrices:AdvancedRegressionTechn
- ChatGPT写作助手:论文写作必备提示词一览
学境思源AcademicIdeas
学境思源ChatGPTAI写作chatgpt
随着人工智能技术的发展,ChatGPT在学术写作领域的应用越来越广泛。它不仅能够帮助撰写论文,还可以通过不同的提示词完成构思、文献综述、数据分析、润色等任务,极大提升写作效率。今天的内容将分享ChatGPT在论文写作中最常用的提示词,帮助学术工作者更好地利用这一工具,从构思到定稿,全方位提升写作体验与效率。1.论文构思与选题目的:帮助确定研究方向、制定研究问题和目标。常用提示词:“提出一个关于[主
- R语言的编程范式
编程小筑
包罗万象golang开发语言后端
R语言的编程范式探讨引言R语言作为一种专门用于统计分析和数据可视化的编程语言,近年来得到了广泛的应用。无论是在学术研究、企业分析,还是在数据科学的各个领域,R语言凭借其强大的数据处理能力和丰富的图形化工具,吸引了大批用户。在这一背景下,理解R语言的编程范式对于提升我们的编程能力、优化数据分析过程具有重要意义。本文将探讨R语言的编程范式,包括其命令式编程、函数式编程、面向对象编程等特性,并通过实例分
- ios内付费
374016526
ios内付费
近年来写了很多IOS的程序,内付费也用到不少,使用IOS的内付费实现起来比较麻烦,这里我写了一个简单的内付费包,希望对大家有帮助。
具体使用如下:
这里的sender其实就是调用者,这里主要是为了回调使用。
[KuroStoreApi kuroStoreProductId:@"产品ID" storeSender:self storeFinishCallBa
- 20 款优秀的 Linux 终端仿真器
brotherlamp
linuxlinux视频linux资料linux自学linux教程
终端仿真器是一款用其它显示架构重现可视终端的计算机程序。换句话说就是终端仿真器能使哑终端看似像一台连接上了服务器的客户机。终端仿真器允许最终用户用文本用户界面和命令行来访问控制台和应用程序。(LCTT 译注:终端仿真器原意指对大型机-哑终端方式的模拟,不过在当今的 Linux 环境中,常指通过远程或本地方式连接的伪终端,俗称“终端”。)
你能从开源世界中找到大量的终端仿真器,它们
- Solr Deep Paging(solr 深分页)
eksliang
solr深分页solr分页性能问题
转载请出自出处:http://eksliang.iteye.com/blog/2148370
作者:eksliang(ickes) blg:http://eksliang.iteye.com/ 概述
长期以来,我们一直有一个深分页问题。如果直接跳到很靠后的页数,查询速度会比较慢。这是因为Solr的需要为查询从开始遍历所有数据。直到Solr的4.7这个问题一直没有一个很好的解决方案。直到solr
- 数据库面试题
18289753290
面试题 数据库
1.union ,union all
网络搜索出的最佳答案:
union和union all的区别是,union会自动压缩多个结果集合中的重复结果,而union all则将所有的结果全部显示出来,不管是不是重复。
Union:对两个结果集进行并集操作,不包括重复行,同时进行默认规则的排序;
Union All:对两个结果集进行并集操作,包括重复行,不进行排序;
2.索引有哪些分类?作用是
- Android TV屏幕适配
酷的飞上天空
android
先说下现在市面上TV分辨率的大概情况
两种分辨率为主
1.720标清,分辨率为1280x720.
屏幕尺寸以32寸为主,部分电视为42寸
2.1080p全高清,分辨率为1920x1080
屏幕尺寸以42寸为主,此分辨率电视屏幕从32寸到50寸都有
适配遇到问题,已1080p尺寸为例:
分辨率固定不变,屏幕尺寸变化较大。
如:效果图尺寸为1920x1080,如果使用d
- Timer定时器与ActionListener联合应用
永夜-极光
java
功能:在控制台每秒输出一次
代码:
package Main;
import javax.swing.Timer;
import java.awt.event.*;
public class T {
private static int count = 0;
public static void main(String[] args){
- Ubuntu14.04系统Tab键不能自动补全问题解决
随便小屋
Ubuntu 14.04
Unbuntu 14.4安装之后就在终端中使用Tab键不能自动补全,解决办法如下:
1、利用vi编辑器打开/etc/bash.bashrc文件(需要root权限)
sudo vi /etc/bash.bashrc
接下来会提示输入密码
2、找到文件中的下列代码
#enable bash completion in interactive shells
#if
- 学会人际关系三招 轻松走职场
aijuans
职场
要想成功,仅有专业能力是不够的,处理好与老板、同事及下属的人际关系也是门大学问。如何才能在职场如鱼得水、游刃有余呢?在此,教您简单实用的三个窍门。
第一,多汇报
最近,管理学又提出了一个新名词“追随力”。它告诉我们,做下属最关键的就是要多请示汇报,让上司随时了解你的工作进度,有了新想法也要及时建议。不知不觉,你就有了“追随力”,上司会越来越了解和信任你。
第二,勤沟通
团队的力
- 《O2O:移动互联网时代的商业革命》读书笔记
aoyouzi
读书笔记
移动互联网的未来:碎片化内容+碎片化渠道=各式精准、互动的新型社会化营销。
O2O:Online to OffLine 线上线下活动
O2O就是在移动互联网时代,生活消费领域通过线上和线下互动的一种新型商业模式。
手机二维码本质:O2O商务行为从线下现实世界到线上虚拟世界的入口。
线上虚拟世界创造的本意是打破信息鸿沟,让不同地域、不同需求的人
- js实现图片随鼠标滚动的效果
百合不是茶
JavaScript滚动属性的获取图片滚动属性获取页面加载
1,获取样式属性值
top 与顶部的距离
left 与左边的距离
right 与右边的距离
bottom 与下边的距离
zIndex 层叠层次
例子:获取左边的宽度,当css写在body标签中时
<div id="adver" style="position:absolute;top:50px;left:1000p
- ajax同步异步参数async
bijian1013
jqueryAjaxasync
开发项目开发过程中,需要将ajax的返回值赋到全局变量中,然后在该页面其他地方引用,因为ajax异步的原因一直无法成功,需将async:false,使其变成同步的。
格式:
$.ajax({ type: 'POST', ur
- Webx3框架(1)
Bill_chen
eclipsespringmaven框架ibatis
Webx是淘宝开发的一套Web开发框架,Webx3是其第三个升级版本;采用Eclipse的开发环境,现在支持java开发;
采用turbine原型的MVC框架,扩展了Spring容器,利用Maven进行项目的构建管理,灵活的ibatis持久层支持,总的来说,还是一套很不错的Web框架。
Webx3遵循turbine风格,velocity的模板被分为layout/screen/control三部
- 【MongoDB学习笔记五】MongoDB概述
bit1129
mongodb
MongoDB是面向文档的NoSQL数据库,尽量业界还对MongoDB存在一些质疑的声音,比如性能尤其是查询性能、数据一致性的支持没有想象的那么好,但是MongoDB用户群确实已经够多。MongoDB的亮点不在于它的性能,而是它处理非结构化数据的能力以及内置对分布式的支持(复制、分片达到的高可用、高可伸缩),同时它提供的近似于SQL的查询能力,也是在做NoSQL技术选型时,考虑的一个重要因素。Mo
- spring/hibernate/struts2常见异常总结
白糖_
Hibernate
Spring
①ClassNotFoundException: org.aspectj.weaver.reflect.ReflectionWorld$ReflectionWorldException
缺少aspectjweaver.jar,该jar包常用于spring aop中
②java.lang.ClassNotFoundException: org.sprin
- jquery easyui表单重置(reset)扩展思路
bozch
formjquery easyuireset
在jquery easyui表单中 尚未提供表单重置的功能,这就需要自己对其进行扩展。
扩展的时候要考虑的控件有:
combo,combobox,combogrid,combotree,datebox,datetimebox
需要对其添加reset方法,reset方法就是把初始化的值赋值给当前的组件,这就需要在组件的初始化时将值保存下来。
在所有的reset方法添加完毕之后,就需要对fo
- 编程之美-烙饼排序
bylijinnan
编程之美
package beautyOfCoding;
import java.util.Arrays;
/*
*《编程之美》的思路是:搜索+剪枝。有点像是写下棋程序:当前情况下,把所有可能的下一步都做一遍;在这每一遍操作里面,计算出如果按这一步走的话,能不能赢(得出最优结果)。
*《编程之美》上代码有很多错误,且每个变量的含义令人费解。因此我按我的理解写了以下代码:
*/
- Struts1.X 源码分析之ActionForm赋值原理
chenbowen00
struts
struts1在处理请求参数之前,首先会根据配置文件action节点的name属性创建对应的ActionForm。如果配置了name属性,却找不到对应的ActionForm类也不会报错,只是不会处理本次请求的请求参数。
如果找到了对应的ActionForm类,则先判断是否已经存在ActionForm的实例,如果不存在则创建实例,并将其存放在对应的作用域中。作用域由配置文件action节点的s
- [空天防御与经济]在获得充足的外部资源之前,太空投资需有限度
comsci
资源
这里有一个常识性的问题:
地球的资源,人类的资金是有限的,而太空是无限的.....
就算全人类联合起来,要在太空中修建大型空间站,也不一定能够成功,因为资源和资金,技术有客观的限制....
&
- ORACLE临时表—ON COMMIT PRESERVE ROWS
daizj
oracle临时表
ORACLE临时表 转
临时表:像普通表一样,有结构,但是对数据的管理上不一样,临时表存储事务或会话的中间结果集,临时表中保存的数据只对当前
会话可见,所有会话都看不到其他会话的数据,即使其他会话提交了,也看不到。临时表不存在并发行为,因为他们对于当前会话都是独立的。
创建临时表时,ORACLE只创建了表的结构(在数据字典中定义),并没有初始化内存空间,当某一会话使用临时表时,ORALCE会
- 基于Nginx XSendfile+SpringMVC进行文件下载
denger
应用服务器Webnginx网络应用lighttpd
在平常我们实现文件下载通常是通过普通 read-write方式,如下代码所示。
@RequestMapping("/courseware/{id}")
public void download(@PathVariable("id") String courseID, HttpServletResp
- scanf接受char类型的字符
dcj3sjt126com
c
/*
2013年3月11日22:35:54
目的:学习char只接受一个字符
*/
# include <stdio.h>
int main(void)
{
int i;
char ch;
scanf("%d", &i);
printf("i = %d\n", i);
scanf("%
- 学编程的价值
dcj3sjt126com
编程
发一个人会编程, 想想以后可以教儿女, 是多么美好的事啊, 不管儿女将来从事什么样的职业, 教一教, 对他思维的开拓大有帮助
像这位朋友学习:
http://blog.sina.com.cn/s/articlelist_2584320772_0_1.html
VirtualGS教程 (By @林泰前): 几十年的老程序员,资深的
- 二维数组(矩阵)对角线输出
飞天奔月
二维数组
今天在BBS里面看到这样的面试题目,
1,二维数组(N*N),沿对角线方向,从右上角打印到左下角如N=4: 4*4二维数组
{ 1 2 3 4 }
{ 5 6 7 8 }
{ 9 10 11 12 }
{13 14 15 16 }
打印顺序
4
3 8
2 7 12
1 6 11 16
5 10 15
9 14
13
要
- Ehcache(08)——可阻塞的Cache——BlockingCache
234390216
并发ehcacheBlockingCache阻塞
可阻塞的Cache—BlockingCache
在上一节我们提到了显示使用Ehcache锁的问题,其实我们还可以隐式的来使用Ehcache的锁,那就是通过BlockingCache。BlockingCache是Ehcache的一个封装类,可以让我们对Ehcache进行并发操作。其内部的锁机制是使用的net.
- mysqldiff对数据库间进行差异比较
jackyrong
mysqld
mysqldiff该工具是官方mysql-utilities工具集的一个脚本,可以用来对比不同数据库之间的表结构,或者同个数据库间的表结构
如果在windows下,直接下载mysql-utilities安装就可以了,然后运行后,会跑到命令行下:
1) 基本用法
mysqldiff --server1=admin:12345
- spring data jpa 方法中可用的关键字
lawrence.li
javaspring
spring data jpa 支持以方法名进行查询/删除/统计。
查询的关键字为find
删除的关键字为delete/remove (>=1.7.x)
统计的关键字为count (>=1.7.x)
修改需要使用@Modifying注解
@Modifying
@Query("update User u set u.firstna
- Spring的ModelAndView类
nicegege
spring
项目中controller的方法跳转的到ModelAndView类,一直很好奇spring怎么实现的?
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* yo
- 搭建 CentOS 6 服务器(13) - rsync、Amanda
rensanning
centos
(一)rsync
Server端
# yum install rsync
# vi /etc/xinetd.d/rsync
service rsync
{
disable = no
flags = IPv6
socket_type = stream
wait
- Learn Nodejs 02
toknowme
nodejs
(1)npm是什么
npm is the package manager for node
官方网站:https://www.npmjs.com/
npm上有很多优秀的nodejs包,来解决常见的一些问题,比如用node-mysql,就可以方便通过nodejs链接到mysql,进行数据库的操作
在开发过程往往会需要用到其他的包,使用npm就可以下载这些包来供程序调用
&nb
- Spring MVC 拦截器
xp9802
spring mvc
Controller层的拦截器继承于HandlerInterceptorAdapter
HandlerInterceptorAdapter.java 1 public abstract class HandlerInterceptorAdapter implements HandlerIntercep