Spark实时项目第九天-ADS层实现热门品牌统计

分析

Spark实时项目第九天-ADS层实现热门品牌统计_第1张图片

数据库的选型

Spark实时项目第九天-ADS层实现热门品牌统计_第2张图片

创建数据库

create database spark_gmall_report

CREATE TABLE `offset` (
  `group_id` varchar(200) NOT NULL,
  `topic` varchar(200) NOT NULL,
  `partition_id` int(11) NOT NULL,
  `topic_offset` bigint(20) DEFAULT NULL,
  PRIMARY KEY (`group_id`,`topic`,`partition_id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8

CREATE TABLE `spu_order_final_detail_amount_stat` ( stat_time datetime  ,spu_id varchar(20) ,spu_name  varchar(200),amount decimal(16,2) ,
  PRIMARY KEY (`stat_time`,`spu_id`,`spu_name`)
  )ENGINE=InnoDB  DEFAULT CHARSET=utf8

Spark实时项目第九天-ADS层实现热门品牌统计_第3张图片

增加配置application.conf

在spark-gmall-dw-realtime\src\main\resources\application.conf

db.default.driver="com.mysql.jdbc.Driver"
db.default.url="jdbc:mysql://hadoop2/spark_gmall_report?characterEncoding=utf-8&useSSL=false"
db.default.user="root"
db.default.password="000000"

Spark实时项目第九天-ADS层实现热门品牌统计_第4张图片

POM

此处引用了一个 scala的MySQL工具:scalikeJdbc
配置文件: 默认使用 application.conf

<properties>
        <spark.version>2.4.0</spark.version>
        <scala.version>2.11.8</scala.version>
        <kafka.version>1.0.0</kafka.version>
        <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
        <project.reporting.outputEncoding>UTF-8</project.reporting.outputEncoding>
        <java.version>1.8</java.version>
    </properties>


    <dependencies>

        <dependency>
            <groupId>com.alibaba</groupId>
            <artifactId>fastjson</artifactId>
            <version>1.2.56</version>
        </dependency>



        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-core_2.11</artifactId>
            <version>${spark.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-streaming_2.11</artifactId>
            <version>${spark.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.kafka</groupId>
            <artifactId>kafka-clients</artifactId>
            <version>${kafka.version}</version>

        </dependency>
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-streaming-kafka-0-10_2.11</artifactId>
            <version>${spark.version}</version>
        </dependency>

        <dependency>
            <groupId>redis.clients</groupId>
            <artifactId>jedis</artifactId>
            <version>2.9.0</version>
        </dependency>


        <dependency>
            <groupId>org.apache.phoenix</groupId>
            <artifactId>phoenix-spark</artifactId>
            <version>4.14.2-HBase-1.3</version>
        </dependency>

        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-sql_2.11</artifactId>
            <version>${spark.version}</version>
        </dependency>


        <dependency>
            <groupId>io.searchbox</groupId>
            <artifactId>jest</artifactId>
            <version>5.3.3</version>

        </dependency>

        <dependency>
            <groupId>net.java.dev.jna</groupId>
            <artifactId>jna</artifactId>
            <version>4.5.2</version>
        </dependency>

        <dependency>
            <groupId>org.codehaus.janino</groupId>
            <artifactId>commons-compiler</artifactId>
            <version>2.7.8</version>
        </dependency>

        <dependency>
            <groupId>org.elasticsearch</groupId>
            <artifactId>elasticsearch</artifactId>
            <version>2.4.6</version>
        </dependency>

        <dependency>
            <groupId>org.apache.phoenix</groupId>
            <artifactId>phoenix-spark</artifactId>
            <version>4.14.2-HBase-1.3</version>
        </dependency>

        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-sql_2.11</artifactId>
            <version>${spark.version}</version>
        </dependency>


        <dependency>
            <groupId>org.scalikejdbc</groupId>
            <artifactId>scalikejdbc_2.11</artifactId>
            <version>2.5.0</version>
        </dependency>
        <!-- scalikejdbc-config_2.11 -->
        <dependency>
            <groupId>org.scalikejdbc</groupId>
            <artifactId>scalikejdbc-config_2.11</artifactId>
            <version>2.5.0</version>
        </dependency>
        <dependency>
            <groupId>mysql</groupId>
            <artifactId>mysql-connector-java</artifactId>
            <version>5.1.47</version>
        </dependency>
    </dependencies>

MySQLUtil

用于查询MySQL数据库 scala\com\atguigu\gmall\realtime\utils\MysqlUtil.scala

import java.sql.{Connection, DriverManager, ResultSet, ResultSetMetaData, Statement}
import com.alibaba.fastjson.JSONObject
import scala.collection.mutable.ListBuffer

object  MysqlUtil {

  def main(args: Array[String]): Unit = {
      val list:  List[ JSONObject] = queryList("select * from offset_1122")
      println(list)
  }

  def   queryList(sql:String):List[JSONObject]={
         Class.forName("com.mysql.jdbc.Driver")
        val resultList: ListBuffer[JSONObject] = new  ListBuffer[ JSONObject]()
        val conn: Connection = DriverManager.getConnection("jdbc:mysql://hadoop2:3306/gmall1122_rs?characterEncoding=utf-8&useSSL=false","root","123123")
        val stat: Statement = conn.createStatement
        println(sql)
        val rs: ResultSet = stat.executeQuery(sql )
        val md: ResultSetMetaData = rs.getMetaData
        while (  rs.next ) {
           val rowData = new JSONObject();
          for (i  <-1 to md.getColumnCount  ) {
              rowData.put(md.getColumnName(i), rs.getObject(i))
          }
          resultList+=rowData
        }

        stat.close()
        conn.close()
        resultList.toList
  }

}

Spark实时项目第九天-ADS层实现热门品牌统计_第5张图片

增加OffsetManagerMySQLUtil

在scala\com\atguigu\gmall\realtime\utils\OffsetManagerMySQLUtil.scala

import com.alibaba.fastjson.JSONObject
import org.apache.kafka.common.TopicPartition

object OffsetManagerMySQLUtil {


  /**
    * 从Mysql中读取偏移量
    * @param groupId
    * @param topic
    * @return
    */
  def getOffset(groupId:String,topic:String):Map[TopicPartition,Long]={
      var offsetMap=Map[TopicPartition,Long]()

      val offsetJsonObjList: List[JSONObject] = MysqlUtil.queryList("SELECT  group_id ,topic,partition_id  , topic_offset  FROM offset_1122 where group_id='"+groupId+"' and topic='"+topic+"'")

      if(offsetJsonObjList!=null&&offsetJsonObjList.size==0){
            null
      }else {

            val kafkaOffsetList: List[(TopicPartition, Long)] = offsetJsonObjList.map { offsetJsonObj  =>
             (new TopicPartition(offsetJsonObj.getString("topic"),offsetJsonObj.getIntValue("partition_id")), offsetJsonObj.getLongValue("topic_offset"))
           }
           kafkaOffsetList.toMap
      }
   }

}

Spark实时项目第九天-ADS层实现热门品牌统计_第6张图片

增加TrademarkAmountSumApp

在scala\com\atguigu\gmall\realtime\app\ads\TrademarkAmountSumApp.scala

import java.lang.Math

import com.alibaba.fastjson.JSON
import org.apache.kafka.clients.consumer.ConsumerRecord
import org.apache.kafka.common.TopicPartition
import org.apache.spark.SparkConf
import org.apache.spark.streaming.{Seconds, StreamingContext}
import org.apache.spark.streaming.dstream.{DStream, InputDStream}
import org.apache.spark.streaming.kafka010.{HasOffsetRanges, OffsetRange}
import java.lang.Math
import java.text.SimpleDateFormat
import java.util.Date

import com.atguigu.gmall.realtime.bean.OrderDetailWide
import com.atguigu.gmall.realtime.utils.{MyKafkaUtil, OffsetManagerMySQLUtil}
import org.apache.spark.rdd.RDD
import scalikejdbc.{DB, SQL}
import scalikejdbc.config.DBs
object TrademarkAmountSumApp {

  def main(args: Array[String]): Unit = {
    val sparkConf: SparkConf = new SparkConf().setMaster("local[*]").setAppName("ads_trademark_sum_app")

    val ssc = new StreamingContext(sparkConf, Seconds(5))
    val topic = "DWS_ORDER_DETAIL_WIDE";
    val groupId = "ads_trademark_sum_group"


    /////////////////////  偏移量处理///////////////////////////
    ////  改成 //mysql
    val offset: Map[TopicPartition, Long] = OffsetManagerMySQLUtil.getOffset(groupId, topic)

    var inputDstream: InputDStream[ConsumerRecord[String, String]] = null
    // 判断如果从redis中读取当前最新偏移量 则用该偏移量加载kafka中的数据  否则直接用kafka读出默认最新的数据
    if (offset != null && offset.size > 0) {
      inputDstream = MyKafkaUtil.getKafkaStream(topic, ssc, offset, groupId)
    } else {
      inputDstream = MyKafkaUtil.getKafkaStream(topic, ssc, groupId)
    }

    //取得偏移量步长
    var offsetRanges: Array[OffsetRange] = null
    val inputGetOffsetDstream: DStream[ConsumerRecord[String, String]] = inputDstream.transform { rdd =>
      offsetRanges = rdd.asInstanceOf[HasOffsetRanges].offsetRanges
      rdd
    }

    //转换结构
    val orderDetailWideDstream: DStream[OrderDetailWide] = inputGetOffsetDstream.map { record =>
      val jsonStr: String = record.value()
      val orderDetailWide: OrderDetailWide = JSON.parseObject(jsonStr, classOf[OrderDetailWide])
      orderDetailWide
    }

    val orderWideWithKeyDstream: DStream[(String, Double)] = orderDetailWideDstream.map { orderDetailWide =>
      (orderDetailWide.tm_id + ":" + orderDetailWide.tm_name, orderDetailWide.final_detail_amount)
    }
    val orderWideSumDstream: DStream[(String, Double)] = orderWideWithKeyDstream.reduceByKey ((amount1,amount2)=>
      java.lang.Math.round((amount1+amount2)/100)*100
    )
    //保存数据字段:时间(业务时间也行),维度, 度量    stat_time ,tm_id,tm_name,amount,(sku_num)(order_count)
    //保存偏移量


    orderWideSumDstream.foreachRDD{rdd:RDD[(String, Double)]=>
      //把各个executor中各个分区的数据收集到driver中的一个数组
      val orderWideArr: Array[(String, Double)] = rdd.collect()
      // scalikejdbc
      if(orderWideArr!=null&&orderWideArr.size>0){
        // 加载配置
        DBs.setup()
        DB.localTx{implicit session=>  //事务启动
          // 偏移量保存完毕
          for (offset <- offsetRanges ) {
            println(offset.partition+"::"+offset.untilOffset)
            SQL("REPLACE INTO  `offset`(group_id,topic, partition_id, topic_offset)  VALUES( ?,?,?,?)  ").bind(groupId,topic,offset.partition,offset.untilOffset).update().apply()
          }
          //  throw new RuntimeException("强行异常测试!!!!")
          //整个集合保存完毕
          for ((tm,amount)  <- orderWideArr ) {
            val statTime: String = new SimpleDateFormat("yyyy-MM-dd HH:mm:dd").format(new Date)
            val tmArr: Array[String] = tm.split(":")
            val tm_id=tmArr(0)
            val tm_name=tmArr(1)
            SQL("insert into trademark_amount_sum_stat values(?,?,?,?)").bind(statTime,tm_id,tm_name,amount).update().apply()
          }

        }//事务结束

      }
    }
    orderWideSumDstream.print(1000)
    ssc.start()
    ssc.awaitTermination()
  }
}

你可能感兴趣的:(MySQL,Gmall,Spark)