【LOJ #3114】【SDOI2019】—移动金币(博弈论+数位dp)

传送门

首先这个很套路的转化成阶梯 N i m Nim Nim,把相邻的空看做石子
问题就变成有 n − m n-m nm个石子,放在 m + 1 m+1 m+1个阶梯,先手必胜的状态

考虑先手必败是奇数位置异或和为 0 0 0
于是可以数位 d p dp dp

考虑先枚举给奇数填多少个,把剩下填给偶数
f [ i ] [ j ] f[i][j] f[i][j]表示前 i i i位,还剩 j j j个石子,异或和为0的方案数
只需要枚举这一位选几个(当然必须是偶数个)
然后就完了

总方案和分配给偶数就是插板法随便算一下就完了

复杂度 O ( n m l o g ) O(nmlog) O(nmlog)

#include
using namespace std;
const int RLEN=1<<20|1;
inline char gc(){
    static char ibuf[RLEN],*ib,*ob;
    (ob==ib)&&(ob=(ib=ibuf)+fread(ibuf,1,RLEN,stdin));
    return (ob==ib)?EOF:*ib++;
}
inline int read(){
    char ch=gc();
    int res=0,f=1;
    while(!isdigit(ch))f^=ch=='-',ch=gc();
    while(isdigit(ch))res=(res+(res<<2)<<1)+(ch^48),ch=gc();
    return f?res:-res;
}
#define ll long long
#define re register
#define pii pair
#define fi first
#define se second
#define pb push_back
#define cs const
#define bg begin
#define poly vector
cs int mod=1e9+9;
inline int add(int a,int b){return (a+=b)>=mod?a-mod:a;}
inline int dec(int a,int b){return (a-=b)<0?a+mod:a;}
inline int mul(int a,int b){return 1ll*a*b%mod;}
inline void Add(int &a,int b){(a+=b)>=mod?a-=mod:0;}
inline void Dec(int &a,int b){(a-=b)<0?a+=mod:0;}
inline void Mul(int &a,int b){a=1ll*a*b%mod;}
inline int ksm(int a,int b,int res=1){for(;b;b>>=1,Mul(a,a))(b&1)&&(Mul(res,a),1);return res;}
inline int Inv(int x){return ksm(x,mod-2);}
inline void chemx(int &a,int b){a<b?a=b:0;}
inline void chemn(int &a,int b){a>b?a=b:0;}
cs int N=150005,M=55;
int f[22][N],n,m,num,tot,ou,fac[N+M],ifac[N+M];
inline void init(){
	cs int len=150050;
	fac[0]=ifac[0]=1;
	for(int i=1;i<=len;i++)fac[i]=mul(fac[i-1],i);
	ifac[len]=Inv(fac[len]);
	for(int i=len-1;i;i--)ifac[i]=mul(ifac[i+1],i+1);
}
inline int C(int n,int m){
	return n<m?0:mul(fac[n],mul(ifac[m],ifac[n-m]));
}
int main(){
	init();
	n=read(),m=read(),num=(m+1)/2,ou=m-num+1,tot=n-m;
	f[20][tot]=1;
	for(int i=19;~i;i--)
	for(int j=0;j<=tot;j++){
		for(int k=0;j+(1<<i)*k<=tot&&k<=num;k+=2)
			Add(f[i][j],mul(f[i+1][j+(1<<i)*k],C(num,k)));
	}	
	int res=0;
	for(int j=0;j<=tot;j++){
		Add(res,mul(f[0][j],C(j+ou-1,ou-1)));
	}
	int ans=C(n,m);
	cout<<dec(ans,res)<<'\n';
}

你可能感兴趣的:(数位dp)