代码写好,程序开始运行…
1 引擎:Hi!Spider, 你要处理哪一个网站?
2 Spider:老大要我处理xxxx.com。
3 引擎:你把第一个需要处理的URL给我吧。
4 Spider:给你,第一个URL是xxxxxxx.com。
5 引擎:Hi!调度器,我这有request请求你帮我排序入队一下。
6 调度器:好的,正在处理你等一下。
7 引擎:Hi!调度器,把你处理好的request请求给我。
8 调度器:给你,这是我处理好的request
9 引擎:Hi!下载器,你按照老大的下载中间件的设置帮我下载一下这个request请求
10 下载器:好的!给你,这是下载好的东西。(如果失败:sorry,这个request下载失败了。然后引擎告诉调度器,这个request下载失败了,你记录一下,我们待会儿再下载)
11 引擎:Hi!Spider,这是下载好的东西,并且已经按照老大的下载中间件处理过了,你自己处理一下(注意!这儿responses默认是交给def parse()这个函数处理的)
12 Spider:(处理完毕数据之后对于需要跟进的URL),Hi!引擎,我这里有两个结果,这个是我需要跟进的URL,还有这个是我获取到的Item数据。
13 引擎:Hi !管道 我这儿有个item你帮我处理一下!调度器!这是需要跟进URL你帮我处理下。然后从第四步开始循环,直到获取完老大需要全部信息。
14 管道调度器:好的,现在就做!
1.新建项目 (scrapy startproject xxx):新建一个新的爬虫项目
2.明确目标 (编写items.py):明确你想要抓取的目标
3.制作爬虫 (spiders/xxspider.py):制作爬虫开始爬取网页
4.存储内容 (pipelines.py):设计管道存储爬取内容
创建一个Scrapy项目
定义提取的结构化数据(Item)
编写爬取网站的 Spider 并提取出结构化数据(Item)
编写 Item Pipelines 来存储提取到的Item(即结构化数据)
在开始爬取之前,必须创建一个新的Scrapy项目。进入自定义的项目目录中,运行下列命令:
scrapy startproject mySpider
其中, mySpider 为项目名称,可以看到将会创建一个 mySpider 文件夹,目录结构大致如下:
下面来简单介绍一下各个主要文件的作用:
mySpider/
scrapy.cfg
mySpider/
__init__.py
items.py
pipelines.py
settings.py
spiders/
__init__.py
...
这些文件分别是:
scrapy.cfg: 项目的配置文件。
mySpider/: 项目的Python模块,将会从这里引用代码。
mySpider/items.py: 项目的目标文件。
mySpider/pipelines.py: 项目的管道文件。
mySpider/settings.py: 项目的设置文件。
mySpider/spiders/: 存储爬虫代码目录。
我们打算抓取 http://www.itcast.cn/channel/teacher.shtml 网站里的所有讲师的姓名、职称和个人信息。
1.打开 mySpider 目录下的 items.py。
2.Item 定义结构化数据字段,用来保存爬取到的数据,有点像 Python 中的 dict,但是提供了一些额外的保护减少错误。
3.可以通过创建一个 scrapy.Item 类, 并且定义类型为 scrapy.Field 的类属性来定义一个 Item(可以理解成类似于 ORM 的映射关系)。
接下来,创建一个 ItcastItem 类,和构建 item 模型(model)。
import scrapy
class ItcastItem(scrapy.Item):
name = scrapy.Field()
title = scrapy.Field()
info = scrapy.Field()
爬虫功能要分两步:
在当前目录下输入命令,将在mySpider/spider目录下创建一个名为itcast的爬虫,并指定爬取域的范围:
scrapy genspider itcast "itcast.cn"
打开 mySpider/spider目录里的 itcast.py,默认增加了下列代码:
import scrapy
class ItcastSpider(scrapy.Spider):
name = "itcast"
allowed_domains = ["itcast.cn"]
start_urls = (
'http://www.itcast.cn/',
)
def parse(self, response):
pass
其实也可以由我们自行创建itcast.py并编写上面的代码,只不过使用命令可以免去编写固定代码的麻烦
要建立一个Spider, 你必须用scrapy.Spider类创建一个子类,并确定了三个强制的属性 和 一个方法。
name = “” :这个爬虫的识别名称,必须是唯一的,在不同的爬虫必须定义不同的名字。
allow_domains = [] 是搜索的域名范围,也就是爬虫的约束区域,规定爬虫只爬取这个域名下的网页,不存在的URL会被忽略。
start_urls = () :爬取的URL元祖/列表。爬虫从这里开始抓取数据,所以,第一次下载的数据将会从这些urls开始。其他子URL将会从这些起始URL中继承性生成。
parse(self, response) :解析的方法,每个初始URL完成下载后将被调用,调用的时候传入从每一个URL传回的Response对象来作为唯一参数,主要作用如下:
负责解析返回的网页数据(response.body),提取结构化数据(生成item)
生成需要下一页的URL请求。
将start_urls的值修改为需要爬取的第一个url
start_urls = ("http://www.itcast.cn/channel/teacher.shtml",)
修改parse()方法
def parse(self, response):
filename = "teacher.html"
open(filename, 'w').write(response.body)
然后运行一下看看,在mySpider目录下执行:
scrapy crawl itcast
是的,就是 itcast,看上面代码,它是 ItcastSpider 类的 name 属性,也就是使用 scrapy genspider命令的唯一爬虫名。
运行之后,如果打印的日志出现 [scrapy] INFO: Spider closed (finished),代表执行完成。 之后当前文件夹中就出现了一个 teacher.html 文件,里面就是我们刚刚要爬取的网页的全部源代码信息。
注意: Python2.x默认编码环境是ASCII,当和取回的数据编码格式不一致时,可能会造成乱码;我们可以指定保存内容的编码格式,一般情况下,我们可以在代码最上方添加
import sys
reload(sys)
sys.setdefaultencoding("utf-8")
这三行代码是 Python2.x 里解决中文编码的万能钥匙,经过这么多年的吐槽后 Python3 学乖了,默认编码是Unicode了…(祝大家早日拥抱Python3)
爬取整个网页完毕,接下来的就是的取过程了,首先观察页面源码:
<div class="li_txt">
<h3> xxx </h3>
<h4> xxxxx </h4>
<p> xxxxxxxx </p>
是不是一目了然?直接上 XPath 开始提取数据吧。
xpath 方法,我们只需要输入的 xpath 规则就可以定位到相应 html 标签节点,详细内容可以查看 xpath 教程。
不会 xpath 语法没关系,Chrome 给我们提供了一键获取 xpath 地址的方法(右键->检查->copy->copy xpath),如下图:
这里给出一些 XPath 表达式的例子及对应的含义:
/html/head/title: 选择HTML文档中 标签内的 元素
/html/head/title/text(): 选择上面提到的
# -*- coding: utf-8 -*-
import scrapy
# 以下三行是在 Python2.x版本中解决乱码问题,Python3.x 版本的可以去掉
import sys
reload(sys)
sys.setdefaultencoding("utf-8")
class Opp2Spider(scrapy.Spider):
name = 'itcast'
allowed_domains = ['itcast.com']
start_urls = ['http://www.itcast.cn/']
def parse(self, response):
# 获取网站标题
context = response.xpath('/html/head/title/text()')
# 提取网站标题
title = context.extract_first()
print(title)
pass
执行以下命令:
$ scrapy crawl itcast
...
...
传智播客官网-好口碑IT培训机构,一样的教育,不一样的品质
...
...
我们之前在 mySpider/items.py 里定义了一个 ItcastItem 类。 这里引入进来:
from mySpider.items import ItcastItem
然后将我们得到的数据封装到一个 ItcastItem 对象中,可以保存每个老师的属性:
from mySpider.items import ItcastItem
def parse(self, response):
#open("teacher.html","wb").write(response.body).close()
# 存放老师信息的集合
items = []
for each in response.xpath("//div[@class='li_txt']"):
# 将我们得到的数据封装到一个 `ItcastItem` 对象
item = ItcastItem()
#extract()方法返回的都是unicode字符串
name = each.xpath("h3/text()").extract()
title = each.xpath("h4/text()").extract()
info = each.xpath("p/text()").extract()
#xpath返回的是包含一个元素的列表
item['name'] = name[0]
item['title'] = title[0]
item['info'] = info[0]
items.append(item)
# 直接返回最后数据
return items
我们暂时先不处理管道,后面会详细介绍。
保存数据
scrapy保存信息的最简单的方法主要有四种,-o 输出指定格式的文件,命令如下:
scrapy crawl itcast -o teachers.json
json lines格式,默认为Unicode编码
scrapy crawl itcast -o teachers.jsonl
csv 逗号表达式,可用Excel打开
scrapy crawl itcast -o teachers.csv
xml格式
scrapy crawl itcast -o teachers.xml