FastAPI准备之pydantic类型检查工具

  • 官方文档: https://pydantic-docs.helpmanual.io/
  • 这些组织都在用: Jupyter notebook ; FastAPI ; Amazon Web Services ; Uber ; Microsoft
  • 优势: 可以和IDE结合, 可以读取环境变量, 对环境变量做一些检查, 对一些用Python做自动化运维的人来说是福音,比其他的类型检查库要快,可以校验复杂的数据结构(validator),集成到FastAPI框架中写起来会很优雅, Django的DRF也有自己的序列化框架,Golang的Gin框架同样也是.FastAPI和Gin一样优雅, 很喜欢, 并且对扩展开放, 用户可以自定义校验规则
  • 官方的复杂校验案例:
from pydantic import BaseModel, ValidationError, validator

class UserModel(BaseModel):
    name: str
    username: str
    password1: str
    password2: str

    @validator('name')
    def name_must_contain_space(cls, v):
        if ' ' not in v:
            raise ValueError('must contain a space')
        return v.title()

    @validator('password2')
    def passwords_match(cls, v, values, **kwargs):
        if 'password1' in values and v != values['password1']:
            raise ValueError('passwords do not match')
        return v

    @validator('username')
    def username_alphanumeric(cls, v):
        assert v.isalpha(), 'must be alphanumeric'
        return v

print(UserModel(name='samuel colvin', username='scolvin', password1='zxcvbn',
                password2='zxcvbn'))
#> name='Samuel Colvin' username='scolvin' password1='zxcvbn' password2='zxcvbn'

try:
    UserModel(name='samuel', username='scolvin', password1='zxcvbn',
              password2='zxcvbn2')
except ValidationError as e:
    print(e)
"""
2 validation errors for UserModel
name
  must contain a space (type=value_error)
password2
  passwords do not match (type=value_error)
"""
  • 不想用BaseModel可以用优雅的装饰器语法
from datetime import datetime
from pydantic.dataclasses import dataclass

@dataclass
class User:
    id: int
    name: str = 'John Doe'
    signup_ts: datetime = None

user = User(id='42', signup_ts='2032-06-21T12:00')
print(user)
  • 安装上手pip install pydantic
from typing import List
from datetime import datetime
from pydantic import BaseModel, ValidationError


class User(BaseModel):
    id: int
    name = "chr"
    signUp_ts: datetime = None
    friends: List[int] = []


data = {
    "id": 123,
    "signUp_ts": datetime.now(),
    "friends": [1, 2, "a"]  # 这里会将"3"自动转换成int类型,如果不符合类型会自动检查出来抛错
}
try:
    user = User(**data)
except ValidationError as e:
    print(e.json())


# print(user.id)
# print(user.name)
# print(user.signUp_ts)
# print(user.friends)
# print(user.__dict__)
  • 如果不符合类型检查抛错
    FastAPI准备之pydantic类型检查工具_第1张图片

  • 最后附上Benchmark数据(比DRF快了好多啊)

FastAPI准备之pydantic类型检查工具_第2张图片

你可能感兴趣的:(python)