- Windows系统下的Spark环境配置
eeee~~
3:大数据技术实用教程spark大数据分布式
一:Spark的介绍ApacheSpark是一个开源的分布式大数据处理引擎,它提供了一整套开发API,包括流计算和机器学习。Spark支持批处理和流处理,其显著特点是能够在内存中进行迭代计算,从而加快数据处理速度。尽管Spark是用Scala开发的,但它也为Java、Scala、Python和R等高级编程语言提供了开发接口。Spark提供了多个核心组件,包括:SparkCore:提供内存计算的能力
- 入门篇 - Spark简介
君子何为
Spark核心模块image.pngSparkCore:提供了Spark最基础与最核心的功能,Spark其他的功能如:SparkSQL,SparkStreaming,GraphX,MLlib都是在SparkCore的基础上进行扩展的SparkSQL:Spark用来操作结构化数据的组件。通过SparkSQL,用户可以使用SQL或者ApacheHive版本的SQL来查询数据。SparkStreamin
- 深入理解Spark的前世今生
闲云野鹤~~~
Spark
文章来源:https://blog.csdn.net/qq_42107047/article/details/80239094感谢大神分享~~~~~一:大数据的概述1.1Spark是什么? Spark,是一种通用的大数据计算框架,正如传统大数据技术Hadoop的MapReduce、Hive引擎,以及Storm流式实时计算引擎等。Spark包含了大数据领域常见的各种计算框架:比如SparkCore用
- Spark Chapter 8 Spark SQL
深海suke
【参考以慕课网日志分析为例进入大数据Sparksql】0导读SQL:MySQL,Oracle,DB2,SQLServer在大数据平台上实现大数据计算:Hive/SparkSQL/SparkCore直接使用SQL语句进行大数据分析hive的问题:底层MR,2.x之后可以用spark应用场景SQLonHadoop:Hive,Shark(不维护了),Impala(Cloudera,内存使用较多),Pre
- Spark简介
麦克阿瑟99
Spark作为第二代大数据处理工具,跟hadoop对比,它是基于内存的,所以在迭代计算方便速度有了很大提升。我用到的主要是SparkCore,SparkSQL,SparkStreaming。Spark以Rdd作为基础,Rdd是一个分布式的容器,类似于java中的String数组,但是它是分布式的。Rdd中有各种算子,总的来说分为转化算子和行动算子,转换算子不触到真正的计算,当执行到行动算子时才会触
- 大数据组件笔记 -- Spark 入门
L小Ray想有腮
BigData
文章目录一、简介二、Spark运行模式2.1本地模式2.2集群角色2.3Standalone模式2.4Yarn模式2.5总结三、WordCount开发案例实操一、简介Spark是一种基于内存的快速、通用、可扩展的大数据分析计算引擎。Spark历史Spark虽然有自己的资源调度框架,但实际中常用Yarn来进行统一资源管理。Spark框架Spark内置模块SparkCore:实现了Spark的基本功能
- 2019-03-16 Spark基本架构及运行原理
做一只乐观的小猴子
SparkCore:包含Spark的基本功能,包含任务调度,内存管理,容错机制等,内部定义了RDDs(弹性分布式数据集),提供了很多APIs来创建和操作这些RDDs。为其他组件提供底层的服务。SparkSQL:Spark处理结构化数据的库,就像HiveSQL,Mysql一样,企业中用来做报表统计。SparkStreaming:实时数据流处理组件,类似Storm。SparkStreaming提供了A
- 大数据 - Spark系列《一》- 从Hadoop到Spark:大数据计算引擎的演进
王哪跑nn
spark大数据sparkhadoop
目录1.1Hadoop回顾1.2spark简介1.3Spark特性1.通用性2.简洁灵活3.多语言1.4SparkCore编程体验1.4.1spark开发工程搭建1.开发语言选择:2.依赖管理工具:1.4.2Spark编程流程1.获取sparkcontext对象2.加载数据3.处理转换数据4.输出结果,释放资源1.4.3简单代码实现-wordCount在大数据领域,Hadoop一直是一个重要的框架
- SparkCore之RDD---弹性分布式数据集
孤独の√ 3
大数据#spark分布式
目录:RDD的设计与运行原理一、RDD设计背景二、RDD概念1.什么是RDD?2.RDD的属性三、RDD特点1.可分区2.不可变3.依赖关系4.缓存(cache)5.检测点(CheckPoint)四、RDD的创建1.通过并行化的方式创建RDD2.读取文件生成RDD3.通过其他RDD转换五、RDD运行过程RDD的设计与运行原理Spark的核心是建立在统一的抽象RDD上的,使得Spark的各个组件可以
- Spark 的架构与组件
OpenChat
spark架构大数据分布式
1.背景介绍Spark是一个快速、通用的大规模数据处理框架,它可以处理批量数据和流式数据,支持多种数据源,并提供了丰富的数据处理功能。Spark的核心组件包括SparkCore、SparkSQL、SparkStreaming和MLlib等。本文将详细介绍Spark的架构和组件,并分析其优势和挑战。1.1Spark的诞生和发展Spark的诞生可以追溯到2008年,当时Netflix的工程师Matei
- Spark-core
luckboy0000
学习笔记
什么是SparkSpark是基于内存的快速,通用,可扩展的大数据分析引擎Spark的内置模块SparkCore是Spark可以离线处理的部分,实现了spark的基本功能,包含任务调度,错误恢复,与存储系统交互等模块。SparkCore中还包含了对弹性分布式数据集的APISparkSQL可以使用sql结构化语句来查询数据,支持多种数据源,hive,json等SparkStreaming是Spark对
- Pyspark
李明朔
机器学习spark-ml
文章目录一、SparkCore1.SparkContext:2.SparkSession3.RDD4.Broadcast、Accumulator:5.Sparkconf6.SparkFiles7.StorageLevel二、SparkSQL1.读取数据2.保存/写入数据3.Dataframes3.pysparkSQL函数三、SparkStreaming四、MLlib一、SparkCore在Spar
- (转)Spark Streaming遇到问题分析
达微
parkStreaming遇到问题分析1、Spark2.0之后搞了个StructuredStreaming还没仔细了解,可参考:https://github.com/lw-lin/Coo...2、Spark的Job与Streaming的Job有区别及StreamingJob并发控制:先看看SparkStreaming的JobSet,Job,与SparkCore的Job,Stage,TaskSet,
- Spark面试题
韩顺平的小迷弟
大数据面试题spark大数据分布式
1.sparkcore1.简述hadoop和spark的不同点(为什么spark更快)♥♥♥ shuffle都是需要落盘的,因为在宽依赖中需要将上一个阶段的所有分区数据都准备好,才能进入下一个阶段,那么如果一直将数据放在内存中,是非常耗费资源的MapReduce需要将计算的中间结果写入磁盘,然后还要读取磁盘,从而导致了频繁的磁盘IO;而spark不需要将计算中间结果写入磁盘,这得益于spark的
- Spark详解
武昌库里写JAVA
高手面试spark大数据分布式
Spark概念Spark提供了一个全面、统一的框架用于管理各种有着不同性质(文本数据、图表数据等)的数据集和数据源(批量数据或实时的流数据)的大数据处理的需求。核心架构SparkCore包含Spark的基本功能;尤其是定义RDD的API、操作以及这两者上的动作。其他Spark的库都是构建在RDD和SparkCore之上的SparkSQL提供通过ApacheHive的SQL变体Hive查询语言(Hi
- Spark-之自定义wordCount累加器
稳哥的哥
Sparksparkscalabigdata
Spark-之自定义wordCount累加器SparkCore中的3种数据类型:累加器(只写)RDD广播变量(只读)累加器在多个action算子触发的job中重复累加,且需要action算子才能触发累加器操作。packagecom.shufang.accimportcom.shufang.utils.ScUtilimportorg.apache.spark.SparkContextimportor
- 71、Spark SQL之JDBC数据源复杂综合案例实战
ZFH__ZJ
JDBC数据源实战SparkSQL支持使用JDBC从关系型数据库(比如MySQL)中读取数据。读取的数据,依然由DataFrame表示,可以很方便地使用SparkCore提供的各种算子进行处理。实际上用SparkSQL处理JDBC中的数据是非常有用的。比如说,你的MySQL业务数据库中,有大量的数据,比如1000万,然后,你现在需要编写一个程序,对线上的脏数据某种复杂业务逻辑的处理,甚至复杂到可能
- SparkCore阶段练习
我像影子一样
Spark大数据spark大数据
阶段练习查看数据集格式明确需求明确步骤读取文件抽取需要的列以年月为基础,进行reduceByKey统计Dongsi地区的PM排序获取结果编码拷贝数据集data.rar(已上传资源——SparkCore阶段练习数据集)创建类编写代码运行测试@TestdefpmProcess():Unit={ //1.创建sc对象 valconf=newSparkConf().setMaster("local[6]"
- 2024.1.8 Day04_SparkCore_homeWork
白白的wj
spark大数据分布式pythonhadoopbigdata
目录1.简述Spark持久化中缓存和checkpoint检查点的区别2.如何使用缓存和检查点?3.代码题浏览器Nginx案例先进行数据清洗,做后续需求用1、需求一:点击最多的前10个网站域名2、需求二:用户最喜欢点击的页面排序TOP103、需求三:统计每分钟用户搜索次数学生系统案例4.RDD依赖的分类5.简述DAG与Stage形成过程DAG:Stage:1.简述Spark持久化中缓存和checkp
- Spark SQL(六):JDBC数据源
雪飘千里
SparkSQL支持使用JDBC从关系型数据库(比如MySQL)中读取数据。读取的数据,依然由DataFrame表示,可以很方便地使用SparkCore提供的各种算子进行处理。实际上使用SparkSQL处理JDBC中的数据是非常有用的。比如说,我们的MySQL业务数据库中,有大量的数据,比如3000万,现在需要编写一个程序,对线上的脏数据进行某种复杂业务逻辑的处理(统计业务,算法变了后,就需要对所
- Spark基础解析(一)
有语忆语
大数据之Sparkspark大数据分布式
1、Spark概述1.1什么是Spark1.2Spark内置模块SparkCore:实现了Spark的基本功能,包含任务调度、内存管理、错误恢复、与存储系统交互等模块。SparkCore中还包含了对弹性分布式数据集(ResilientDistributedDataSet,简称RDD)的API定义。SparkSQL:是Spark用来操作结构化数据的程序包。通过SparkSQL,我们可以使用SQL或者
- SparkCore基础解析(二)
有语忆语
大数据之SparksparkSparkcoreRDD
1、RDD概述1.1什么是RDDRDD(ResilientDistributedDataset)叫做分布式数据集,是Spark中最基本的数据抽象。代码中是一个抽象类,它代表一个不可变、可分区、里面的元素可并行计算的集合。1.2RDD的属性1)一组分区(Partition),即数据集的基本组成单位;2)一个计算每个分区的函数;3)RDD之间的依赖关系;4)一个Partitioner,即RDD的分片函
- Spark与PySpark(1.概述、框架、模块)
还是那个同伟伟
Sparkspark大数据分布式python
目录1.Spark概念2.Hadoop和Spark的对比3.Spark特点3.1运行速度快3.2简单易用3.3通用性强3.4可以允许运行在很多地方4.Spark框架模块4.1SparkCore4.2SparkSQL4.3SparkStreaming4.4MLlib4.5GraphX5.Spark的运行模式5.1本地模式(单机)Local运行模式5.2Standalone模式(集群)5.3Hadoo
- SparkCore
weixin_50458070
大数据大数据
一、RDD详解1.1什么是RDDRDD(ResilientDistributedDataset)叫做弹性分布式数据集,是Spark中最基本的数据抽象,代表一个不可变、可分区、里面的元素可并行计算的集合。Dataset:一个数据集合,用于存放数据的。Distributed:RDD中的数据是分布式存储的,可用于分布式计算。Resilient:RDD中的数据可以存储在内存中或者磁盘中。1.2RDD的五大
- Spark Core
hipeer
SparkCore介绍SparkCore是Spark的核心计算引擎。它有着速度快和通用的特点,并且实现了Spark的基本功能,包含任务调度,内存管理,错误恢复,与存储交互等模块。SparkCore的组件是RDD,并提供了创建和操作RDD的多个API。Spark工作机制一个应用的生命周期,即用户提交自定义的作业之后,Spark框架进行处理的一系列过程。1.应用执行过程中的基本组件和形态Driver:
- ###好好好######Spark GraphX处理图数据
mishidemudong
SPARK
大数据呈现出不同的形态和大小。它可以是批处理数据,也可以是实时数据流;对前者需要离线处理,需要较多的时间来处理大量的数据行,产生结果和有洞察力的见解,而对后者需要实时处理并几乎同时生成对数据的见解。我们已经了解了如何将ApacheSpark应用于处理批数据(SparkCore)以及处理实时数据(SparkStreaming)。有时候,所需处理的数据是很自然地联系在一起的。譬如,在社交媒体应用中,有
- 大数据之Spark(4)- SparkCore(下)
jackyan163
1RDD编程1.1Action算子1.1.1reduce(func)作用:通过func函数聚集RDD中的所有元素,先聚合分区内数据,再聚合分区间数据。需求:创建一个RDD,将所有元素聚合得到结果。(1)创建一个RDD[Int]scala>valrdd1=sc.makeRDD(1to10,2)rdd1:org.apache.spark.rdd.RDD[Int]=ParallelCollectionR
- sparksql介绍
Guff_hys
sparksql大数据系统架构mapreduceeclipse程序人生
1.1SparkSQL介绍SparkSQL,顾名思义,就是Spark生态体系中的构建在SparkCore基础之上的一个基于SQL的计算模块。 SparkSQL的前身不叫SparkSQL,而叫Shark,最开始的时候底层代码优化,sql的解析、执行引擎等等完全基于Hive,总是Shark的执行速度要比Hive高出一个数量级,但是hive的发展制约了Shark,所以在15年中旬的时候,Shark负责人
- Spark---SparkCore(五)
30岁老阿姨
Sparkspark大数据分布式
五、SparkShuffle文件寻址1、Shuffle文件寻址1)、MapOutputTrackerMapOutputTracker是Spark架构中的一个模块,是一个主从架构。管理磁盘小文件的地址。MapOutputTrackerMaster是主对象,存在于Driver中。MapOutputTrackerWorker是从对象,存在于Excutor中。2)、BlockManagerBlockMan
- Spark---SparkCore(四)
30岁老阿姨
Sparkspark大数据分布式
三、SparkMasterHA1、Master的高可用原理Standalone集群只有一个Master,如果Master挂了就无法提交应用程序,需要给Master进行高可用配置,Master的高可用可以使用fileSystem(文件系统)和zookeeper(分布式协调服务)。fileSystem只有存储功能,可以存储Master的元数据信息,用fileSystem搭建的Master高可用,在Ma
- 强大的销售团队背后 竟然是大数据分析的身影
蓝儿唯美
数据分析
Mark Roberge是HubSpot的首席财务官,在招聘销售职位时使用了大量数据分析。但是科技并没有挤走直觉。
大家都知道数理学家实际上已经渗透到了各行各业。这些热衷数据的人们通过处理数据理解商业流程的各个方面,以重组弱点,增强优势。
Mark Roberge是美国HubSpot公司的首席财务官,HubSpot公司在构架集客营销现象方面出过一份力——因此他也是一位数理学家。他使用数据分析
- Haproxy+Keepalived高可用双机单活
bylijinnan
负载均衡keepalivedhaproxy高可用
我们的应用MyApp不支持集群,但要求双机单活(两台机器:master和slave):
1.正常情况下,只有master启动MyApp并提供服务
2.当master发生故障时,slave自动启动本机的MyApp,同时虚拟IP漂移至slave,保持对外提供服务的IP和端口不变
F5据说也能满足上面的需求,但F5的通常用法都是双机双活,单活的话还没研究过
服务器资源
10.7
- eclipse编辑器中文乱码问题解决
0624chenhong
eclipse乱码
使用Eclipse编辑文件经常出现中文乱码或者文件中有中文不能保存的问题,Eclipse提供了灵活的设置文件编码格式的选项,我们可以通过设置编码 格式解决乱码问题。在Eclipse可以从几个层面设置编码格式:Workspace、Project、Content Type、File
本文以Eclipse 3.3(英文)为例加以说明:
1. 设置Workspace的编码格式:
Windows-&g
- 基础篇--resources资源
不懂事的小屁孩
android
最近一直在做java开发,偶尔敲点android代码,突然发现有些基础给忘记了,今天用半天时间温顾一下resources的资源。
String.xml 字符串资源 涉及国际化问题
http://www.2cto.com/kf/201302/190394.html
string-array
- 接上篇补上window平台自动上传证书文件的批处理问卷
酷的飞上天空
window
@echo off
: host=服务器证书域名或ip,需要和部署时服务器的域名或ip一致 ou=公司名称, o=公司名称
set host=localhost
set ou=localhost
set o=localhost
set password=123456
set validity=3650
set salias=s
- 企业物联网大潮涌动:如何做好准备?
蓝儿唯美
企业
物联网的可能性也许是无限的。要找出架构师可以做好准备的领域然后利用日益连接的世界。
尽管物联网(IoT)还很新,企业架构师现在也应该为一个连接更加紧密的未来做好计划,而不是跟上闸门被打开后的集成挑战。“问题不在于物联网正在进入哪些领域,而是哪些地方物联网没有在企业推进,” Gartner研究总监Mike Walker说。
Gartner预测到2020年物联网设备安装量将达260亿,这些设备在全
- spring学习——数据库(mybatis持久化框架配置)
a-john
mybatis
Spring提供了一组数据访问框架,集成了多种数据访问技术。无论是JDBC,iBATIS(mybatis)还是Hibernate,Spring都能够帮助消除持久化代码中单调枯燥的数据访问逻辑。可以依赖Spring来处理底层的数据访问。
mybatis是一种Spring持久化框架,要使用mybatis,就要做好相应的配置:
1,配置数据源。有很多数据源可以选择,如:DBCP,JDBC,aliba
- Java静态代理、动态代理实例
aijuans
Java静态代理
采用Java代理模式,代理类通过调用委托类对象的方法,来提供特定的服务。委托类需要实现一个业务接口,代理类返回委托类的实例接口对象。
按照代理类的创建时期,可以分为:静态代理和动态代理。
所谓静态代理: 指程序员创建好代理类,编译时直接生成代理类的字节码文件。
所谓动态代理: 在程序运行时,通过反射机制动态生成代理类。
一、静态代理类实例:
1、Serivce.ja
- Struts1与Struts2的12点区别
asia007
Struts1与Struts2
1) 在Action实现类方面的对比:Struts 1要求Action类继承一个抽象基类;Struts 1的一个具体问题是使用抽象类编程而不是接口。Struts 2 Action类可以实现一个Action接口,也可以实现其他接口,使可选和定制的服务成为可能。Struts 2提供一个ActionSupport基类去实现常用的接口。即使Action接口不是必须实现的,只有一个包含execute方法的P
- 初学者要多看看帮助文档 不要用js来写Jquery的代码
百合不是茶
jqueryjs
解析json数据的时候需要将解析的数据写到文本框中, 出现了用js来写Jquery代码的问题;
1, JQuery的赋值 有问题
代码如下: data.username 表示的是: 网易
$("#use
- 经理怎么和员工搞好关系和信任
bijian1013
团队项目管理管理
产品经理应该有坚实的专业基础,这里的基础包括产品方向和产品策略的把握,包括设计,也包括对技术的理解和见识,对运营和市场的敏感,以及良好的沟通和协作能力。换言之,既然是产品经理,整个产品的方方面面都应该能摸得出门道。这也不懂那也不懂,如何让人信服?如何让自己懂?就是不断学习,不仅仅从书本中,更从平时和各种角色的沟通
- 如何为rich:tree不同类型节点设置右键菜单
sunjing
contextMenutreeRichfaces
组合使用target和targetSelector就可以啦,如下: <rich:tree id="ruleTree" value="#{treeAction.ruleTree}" var="node" nodeType="#{node.type}"
selectionChangeListener=&qu
- 【Redis二】Redis2.8.17搭建主从复制环境
bit1129
redis
开始使用Redis2.8.17
Redis第一篇在Redis2.4.5上搭建主从复制环境,对它的主从复制的工作机制,真正的惊呆了。不知道Redis2.8.17的主从复制机制是怎样的,Redis到了2.4.5这个版本,主从复制还做成那样,Impossible is nothing! 本篇把主从复制环境再搭一遍看看效果,这次在Unbuntu上用官方支持的版本。 Ubuntu上安装Red
- JSONObject转换JSON--将Date转换为指定格式
白糖_
JSONObject
项目中,经常会用JSONObject插件将JavaBean或List<JavaBean>转换为JSON格式的字符串,而JavaBean的属性有时候会有java.util.Date这个类型的时间对象,这时JSONObject默认会将Date属性转换成这样的格式:
{"nanos":0,"time":-27076233600000,
- JavaScript语言精粹读书笔记
braveCS
JavaScript
【经典用法】:
//①定义新方法
Function .prototype.method=function(name, func){
this.prototype[name]=func;
return this;
}
//②给Object增加一个create方法,这个方法创建一个使用原对
- 编程之美-找符合条件的整数 用字符串来表示大整数避免溢出
bylijinnan
编程之美
import java.util.LinkedList;
public class FindInteger {
/**
* 编程之美 找符合条件的整数 用字符串来表示大整数避免溢出
* 题目:任意给定一个正整数N,求一个最小的正整数M(M>1),使得N*M的十进制表示形式里只含有1和0
*
* 假设当前正在搜索由0,1组成的K位十进制数
- 读书笔记
chengxuyuancsdn
读书笔记
1、Struts访问资源
2、把静态参数传递给一个动作
3、<result>type属性
4、s:iterator、s:if c:forEach
5、StringBuilder和StringBuffer
6、spring配置拦截器
1、访问资源
(1)通过ServletActionContext对象和实现ServletContextAware,ServletReque
- [通讯与电力]光网城市建设的一些问题
comsci
问题
信号防护的问题,前面已经说过了,这里要说光网交换机与市电保障的关系
我们过去用的ADSL线路,因为是电话线,在小区和街道电力中断的情况下,只要在家里用笔记本电脑+蓄电池,连接ADSL,同样可以上网........
 
- oracle 空间RESUMABLE
daizj
oracle空间不足RESUMABLE错误挂起
空间RESUMABLE操作 转
Oracle从9i开始引入这个功能,当出现空间不足等相关的错误时,Oracle可以不是马上返回错误信息,并回滚当前的操作,而是将操作挂起,直到挂起时间超过RESUMABLE TIMEOUT,或者空间不足的错误被解决。
这一篇简单介绍空间RESUMABLE的例子。
第一次碰到这个特性是在一次安装9i数据库的过程中,在利用D
- 重构第一次写的线程池
dieslrae
线程池 python
最近没有什么学习欲望,修改之前的线程池的计划一直搁置,这几天比较闲,还是做了一次重构,由之前的2个类拆分为现在的4个类.
1、首先是工作线程类:TaskThread,此类为一个工作线程,用于完成一个工作任务,提供等待(wait),继续(proceed),绑定任务(bindTask)等方法
#!/usr/bin/env python
# -*- coding:utf8 -*-
- C语言学习六指针
dcj3sjt126com
c
初识指针,简单示例程序:
/*
指针就是地址,地址就是指针
地址就是内存单元的编号
指针变量是存放地址的变量
指针和指针变量是两个不同的概念
但是要注意: 通常我们叙述时会把指针变量简称为指针,实际它们含义并不一样
*/
# include <stdio.h>
int main(void)
{
int * p; // p是变量的名字, int *
- yii2 beforeSave afterSave beforeDelete
dcj3sjt126com
delete
public function afterSave($insert, $changedAttributes)
{
parent::afterSave($insert, $changedAttributes);
if($insert) {
//这里是新增数据
} else {
//这里是更新数据
}
}
 
- timertask
shuizhaosi888
timertask
java.util.Timer timer = new java.util.Timer(true);
// true 说明这个timer以daemon方式运行(优先级低,
// 程序结束timer也自动结束),注意,javax.swing
// 包中也有一个Timer类,如果import中用到swing包,
// 要注意名字的冲突。
TimerTask task = new
- Spring Security(13)——session管理
234390216
sessionSpring Security攻击保护超时
session管理
目录
1.1 检测session超时
1.2 concurrency-control
1.3 session 固定攻击保护
 
- 公司项目NODEJS实践0.3[ mongo / session ...]
逐行分析JS源代码
mongodbsessionnodejs
http://www.upopen.cn
一、前言
书接上回,我们搭建了WEB服务端路由、模板等功能,完成了register 通过ajax与后端的通信,今天主要完成数据与mongodb的存取,实现注册 / 登录 /
- pojo.vo.po.domain区别
LiaoJuncai
javaVOPOJOjavabeandomain
POJO = "Plain Old Java Object",是MartinFowler等发明的一个术语,用来表示普通的Java对象,不是JavaBean, EntityBean 或者 SessionBean。POJO不但当任何特殊的角色,也不实现任何特殊的Java框架的接口如,EJB, JDBC等等。
即POJO是一个简单的普通的Java对象,它包含业务逻辑
- Windows Error Code
OhMyCC
windows
0 操作成功完成.
1 功能错误.
2 系统找不到指定的文件.
3 系统找不到指定的路径.
4 系统无法打开文件.
5 拒绝访问.
6 句柄无效.
7 存储控制块被损坏.
8 存储空间不足, 无法处理此命令.
9 存储控制块地址无效.
10 环境错误.
11 试图加载格式错误的程序.
12 访问码无效.
13 数据无效.
14 存储器不足, 无法完成此操作.
15 系
- 在storm集群环境下发布Topology
roadrunners
集群stormtopologyspoutbolt
storm的topology设计和开发就略过了。本章主要来说说如何在storm的集群环境中,通过storm的管理命令来发布和管理集群中的topology。
1、打包
打包插件是使用maven提供的maven-shade-plugin,详细见maven-shade-plugin。
<plugin>
<groupId>org.apache.maven.
- 为什么不允许代码里出现“魔数”
tomcat_oracle
java
在一个新项目中,我最先做的事情之一,就是建立使用诸如Checkstyle和Findbugs之类工具的准则。目的是制定一些代码规范,以及避免通过静态代码分析就能够检测到的bug。 迟早会有人给出案例说这样太离谱了。其中的一个案例是Checkstyle的魔数检查。它会对任何没有定义常量就使用的数字字面量给出警告,除了-1、0、1和2。 很多开发者在这个检查方面都有问题,这可以从结果
- zoj 3511 Cake Robbery(线段树)
阿尔萨斯
线段树
题目链接:zoj 3511 Cake Robbery
题目大意:就是有一个N边形的蛋糕,切M刀,从中挑选一块边数最多的,保证没有两条边重叠。
解题思路:有多少个顶点即为有多少条边,所以直接按照切刀切掉点的个数排序,然后用线段树维护剩下的还有哪些点。
#include <cstdio>
#include <cstring>
#include <vector&