python123练习5: 函数和代码复用 (第5周)

实例7:七段数码管绘制
‪‬‪‬‪‬‪‬‪‬‮‬‪‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‮‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‪‬‪‬‪‬‪‬‪‬‪‬‮‬‭‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‪‬
描述

这是"实例"题,与课上讲解实例相同,请作答检验学习效果。‪‬‪‬‪‬‪‬‪‬‮‬‪‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‮‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‪‬‪‬‪‬‪‬‪‬‪‬‮‬‭‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‪‬

七段数码管是一种展示数字的有效方式。‪‬‪‬‪‬‪‬‪‬‮‬‪‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‮‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‪‬‪‬‪‬‪‬‪‬‪‬‮‬‭‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‪‬
‪‬‪‬‪‬‪‬‪‬‮‬‫‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‭‬‪‬ ‪‬‪‬‪‬‪‬‪‬‮‬‪‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‮‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‪‬‪‬‪‬‪‬‪‬‪‬‮‬‭‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‪
请用程序绘制当前系统时间对应的七段数码管,效果如下: ‪‬‪‬‪‬‪‬‪‬‮‬‪‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‮‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‪‬‪‬‪‬‪‬‪‬‪‬‮‬‭‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‪‬

‪‬‪‬‪‬‪‬‪‬‮‬‪‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‮‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‪‬‪‬‪‬‪‬‪‬‪‬‮‬‭‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‪‬python123练习5: 函数和代码复用 (第5周)_第1张图片

要求如下:‪‬‪‬‪‬‪‬‪‬‮‬‫‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‭‬‪‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‭‬‪‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‮‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‪‬‪‬‪‬‪‬‪‬‪‬‮‬‭‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‪‬

(1) 使用 time 库获得系统当前时间,格式如下:20190411‪‬‪‬‪‬‪‬‪‬‮‬‪‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‮‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‪‬‪‬‪‬‪‬‪‬‪‬‮‬‭‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‪‬

(2) 绘制对应的七段数码管‪‬‪‬‪‬‪‬‪‬‮‬‪‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‮‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‪‬‪‬‪‬‪‬‪‬‪‬‮‬‭‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‪‬

(3) 数码管风格不限‪‬‪‬‪‬‪‬‪‬‮‬‪‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‮‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‪‬‪‬‪‬‪‬‪‬‪‬‮‬‭‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‪‬

请在本机编写代码完成实例,建议有趣的风格请在Python123的绘图专区上传展示。

import turtle as t
import time
def drawGap(): #绘制数码管间隔
    t.penup()
    t.fd(5)
def drawLine(draw):   #绘制单段数码管
    drawGap()
    t.pendown() if draw else t.penup()
    t.fd(40)
    drawGap()
    t.right(90)
def drawDigit(d): #根据数字绘制七段数码管
    drawLine(True) if d in [2,3,4,5,6,8,9] else drawLine(False)
    drawLine(True) if d in [0,1,3,4,5,6,7,8,9] else drawLine(False)
    drawLine(True) if d in [0,2,3,5,6,8,9] else drawLine(False)
    drawLine(True) if d in [0,2,6,8] else drawLine(False)
    t.left(90)
    drawLine(True) if d in [0,4,5,6,8,9] else drawLine(False)
    drawLine(True) if d in [0,2,3,5,6,7,8,9] else drawLine(False)
    drawLine(True) if d in [0,1,2,3,4,7,8,9] else drawLine(False)
    t.left(180)
    t.penup()
    t.fd(20)
def drawDate(date):
    t.pencolor("red")
    for i in date:
            drawDigit(eval(i))
def main():
    t.setup(800, 350, 200, 200)
    t.penup()
    t.fd(-300)
    t.pensize(5)
    drawDate(time.strftime('%Y%m%d',time.gmtime()))
    t.done()
main()

基本思路:

 步骤 1:绘制单个数字对应的码管
 步骤 2:获得当前系统时间,变成字符串,绘制对应的码管

思维方法:

 -模块化思维:确定接口,封装功能
 -规则化思维:抽象过程为规则,计算机自动执行
 -化繁为简:将大功能变小组合,分而治之

——————————————————————————————————————————————
557073083385
实例8:科赫雪花小包裹

描述

这是"实例"题,与课上讲解实例相同,请作答检验学习效果。‪‬‪‬‪‬‪‬‪‬‮‬‪‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‮‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‪‬‪‬‪‬‪‬‪‬‪‬‮‬‭‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‪‬

科赫曲线,也叫雪花曲线。绘制科赫曲线。‪‬‪‬‪‬‪‬‪‬‮‬‪‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‮‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‪‬‪‬‪‬‪‬‪‬‪‬‮‬‭‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‪‬
‪‬‪‬‪‬‪‬‪‬‮‬‪‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‮‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‪‬‪‬‪‬‪‬‪‬‪‬‮‬‭‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‪‬python123练习5: 函数和代码复用 (第5周)_第2张图片
‪‬‪‬‪‬‪‬‪‬‮‬‫‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‭‬‪‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‮‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‪‬‪‬‪‬‪‬‪‬‪‬‮‬‭‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‪‬

‪‬‪‬‪‬‪‬‪‬‮‬‪‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‮‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‪‬‪‬‪‬‪‬‪‬‪‬‮‬‭‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‫

请补充编程模板中代码,完成功能:获得用户输入的整数N,作为阶,绘制N阶科赫曲线。

import turtle
def koch(size, n):
    if n == 0:
        turtle.fd(size)
    else:
        for angle in [0, 60, -120, 60]:
           turtle.left(angle)
           koch(size/3, n-1)

def main(level):
    turtle.setup(600,600)
    turtle.penup()
    turtle.goto(-200, 100)
    turtle.pendown()
    turtle.pensize(2)
    koch(400,level)     
    turtle.right(120)
    koch(400,level)
    turtle.right(120)
    koch(400,level)
    turtle.hideturtle()

try:
    level = eval(input("请输入科赫曲线的阶: "))
    main(level)
except:
    print("输入错误")

(1) 基本思路:

 -递归思想:函数 +分支
 -递归链条:线段的组合
 -递归基例:初始线段

(2) 分形几何是一种迭代的图,广泛存在于自然界中,请尝试选择一个新曲线绘制:
-康托尔集、谢宾斯基三角形门格海绵 …
-龙形曲线 、空间填充科赫…
-函数递归的深入应用 …
————————————————————————————————————————
任意累积

描述

请根据编程模板补充代码,计算任意个输入数字的乘积。‪‬‪‬‪‬‪‬‪‬‮‬‪‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‮‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‪‬‪‬‪‬‪‬‪‬‪‬‮‬‭‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‪‬

注意,仅需要在标注…的地方补充一行或多行代码。

def cmul(a, *b):
    m = a
    for i in b:
        m *= i
    return m

print(eval("cmul({})".format(input())))

该程序需要注意两个内容:

  1. 无限制数量函数定义的方法,其中b在函数cmul中表达除了a之外的所有输入参数;

  2. 以字符串形式调用函数的方法,"cmul()"与eval()的组合,提供了很多灵活性
    ——————————————————————————————————————————
    斐波那契数列计算

描述

根据编程模板补充代码,计算斐波那契数列的值,具体功能如下:‪‬‪‬‪‬‪‬‪‬‮‬‪‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‮‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‪‬‪‬‪‬‪‬‪‬‪‬‮‬‭‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‪‬

  1. 获取用户输入整数N,其中,N为正整数‪‬‪‬‪‬‪‬‪‬‮‬‪‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‮‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‪‬‪‬‪‬‪‬‪‬‪‬‮‬‭‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‪‬

  2. 计算斐波那契数列的值‪‬‪‬‪‬‪‬‪‬‮‬‪‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‮‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‪‬‪‬‪‬‪‬‪‬‪‬‮‬‭‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‪‬

如果将斐波那契数列表示为fbi(N),对于整数N,值如下:‪‬‪‬‪‬‪‬‪‬‮‬‪‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‮‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‪‬‪‬‪‬‪‬‪‬‪‬‮‬‭‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‪‬

fbi(1)和fbi(2)的值是1,当N>2时,fbi(N) = fbi(N-1) + fbi(N-2)
‪‬‪‬‪‬‪‬‪‬‮‬‪‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‮‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‪‬‪‬‪‬‪‬‪‬‪‬‮‬‭‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‪‬

请采用递归方式编写。

def fbi(n):
    if n == 1 or n == 2:
        return 1 
    else:
        return fbi(n-1) + fbi(n-2)

n = eval(input())
print(fbi(n))

——————————————————————————————————————————
汉诺塔实践

描述

汉诺塔问题大家都清楚,这里不再赘述。‪‬‪‬‪‬‪‬‪‬‮‬‪‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‮‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‪‬‪‬‪‬‪‬‪‬‪‬‮‬‭‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‪‬

请补充编程模板中代码,完成如下功能:‪‬‪‬‪‬‪‬‪‬‮‬‪‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‮‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‪‬‪‬‪‬‪‬‪‬‪‬‮‬‭‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‪‬

有三个圆柱A、B、C,初始时A上有N个圆盘,N由用户输入给出,最终移动到圆柱C上。‪‬‪‬‪‬‪‬‪‬‮‬‪‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‮‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‪‬‪‬‪‬‪‬‪‬‪‬‮‬‭‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‪‬

每次移动步骤的表达方式示例如下:[STEP 10] A->C。其中,STEP是步骤序号,宽度为4个字符,右对齐。‪‬‪‬‪‬‪‬‪‬‮‬‪‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‮‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‪‬‪‬‪‬‪‬‪‬‪‬‮‬‭‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‪‬

请编写代码,获得输入N后,输出汉诺塔移动的步骤。

steps = 0
def hanoi(src, des, mid, n):
    global steps
    if n == 1:
        steps += 1
        print("[STEP{:>4}] {}->{}".format(steps, src, des))
    else:
        hanoi(src, mid, des, n-1)
        steps += 1
        print("[STEP{:>4}] {}->{}".format(steps, src, des))        
        hanoi(mid, des, src, n-1)
N = eval(input())
hanoi("A", "C", "B", N)

汉诺塔实例十分经典,学习每门语言都要写一遍。

这个例子要注意:全局变量的使用以及递归的用法。递归用法注意:函数定义+分支表示。
————————————————————————————————————————

欢迎关注我的公众号【panda一块砖】,更新更多编程相关文章与资源。

你可能感兴趣的:(pythonMOOC)