- 基于python深度学习遥感影像地物分类与目标识别、分割实践技术应用
xiao5kou4chang6kai4
深度学习遥感勘测python深度学习分类
专题一:深度学习发展与机器学习深度学习的历史发展过程机器学习,深度学习等任务的基本处理流程梯度下降算法讲解不同初始化,学习率对梯度下降算法的实例分析从机器学习到深度学习算法专题二深度卷积网络、卷积神经网络、卷积运算的基本原理池化操作,全连接层,以及分类器的作用BP反向传播算法的理解一个简单CNN模型代码理解特征图,卷积核可视化分析专题三TensorFlow与keras介绍与入门TensorFlow
- 翻译Deep Learning and the Game of Go(14)第十二章 采用actor-critic方法的强化学习
idol_watch
围棋与深度学习
本章包括:利用优势使强化学习更有效率用actor-critic方法来实现自我提升AI设计和训练Keras的多输出神经网络如果你正在学习下围棋,最好的改进方法之一是让一个水平更高的棋手给你复盘。有时候,最有用的反馈只是指出你在哪里赢棋或输棋。复盘的人可能会给出这样的评论,“你下了30步后已经远远落后了”或“在下了110步后,你有一个获胜的局面,但你的对手在130时扭转了局面。”为什么这种反馈是有帮助
- 深度学习(1)-简单神经网络示例
yyc_audio
深度学习人工智能
我们来看一个神经网络的具体实例:使用Python的Keras库来学习手写数字分类。在这个例子中,我们要解决的问题是,将手写数字的灰度图像(28像素×28像素)划分到10个类别中(从0到9)。我们将使用MNIST数据集,图2-1给出了MNIST数据集的一些样本。在机器学习中,分类问题中的某个类别叫作类(class),数据点叫作样本(sample),与某个样本对应的类叫作标签(label)。你不需要现
- keras实现TCN网络层
谦虚且进步
深度学习预测keras人工智能深度学习
keras实现TCN网络层,keras3.0可用。fromkeras.layersimportLambda,Dense,Layer,Conv1DimporttensorflowastfclassTCNCell(Layer):"""sumary_line:Chinese:让输入的时间序列[bs,seql,dim]提升kernel_size倍的感受野English:Doublethereceptive
- 25、深度学习-自学之路-卷积神经网络基于MNIST数据集的程序展示
小宇爱
深度学习-自学之路深度学习cnn人工智能
importkeras#添加Keraskuimportsys,numpyasnpfromkeras.utilsimportnp_utilsimportosfromkeras.datasetsimportmnistprint("licheng:"+"20"+'\n')np.random.seed(1)(x_train,y_train),(x_test,y_test)=mnist.load_data(
- 【深度学习入门实战】基于Keras的手写数字识别实战(附完整可视化分析)
机器学习司猫白
深度学习深度学习keras人工智能机器学习python
本人主页:机器学习司猫白ok,话不多说,我们进入正题吧项目概述本案例使用经典的MNIST手写数字数据集,通过Keras构建全连接神经网络,实现0-9数字的分类识别。文章将包含:关键概念图解完整实现代码训练过程可视化模型效果深度分析环境准备importnumpyasnpimportmatplotlib.pyplotaspltfromtensorflowimportkerasfromtensorflo
- 深度学习 视频推荐
小赖同学啊
人工智能深度学习音视频人工智能
以下为你呈现一个基于深度学习实现视频推荐的简化代码示例。这里我们使用的是协同过滤思想结合神经网络的方式,借助TensorFlow和Keras库来构建模型。在这个示例中,假设已有用户对视频的评分数据,目标是预测用户对未评分视频的评分,进而为用户推荐可能感兴趣的视频。1.环境准备要确保你已经安装了必要的库,如numpy、pandas、tensorflow等,可以使用以下命令进行安装:pipinstal
- Python中LSTM算法的实现与应用
昊叔Crescdim
本文还有配套的精品资源,点击获取简介:本教程详细介绍了如何在Python编程环境下实现LSTM算法。首先解释了LSTM的工作原理,重点在于其门结构如何有效解决传统RNN的梯度问题,并通过控制信息流动以学习长期依赖。接着,教程以Keras库为例,逐步演示了安装库、数据预处理、模型构建、编译、训练、评估和预测等步骤。深入讲解了在序列数据处理如自然语言和时间序列预测任务中的实际应用,并提供了实践案例,强
- (python)如何看自己安装的包的版本
9677
Pythonpython开发语言
linuxpiplist|grep"numpy\|scipy\|tensorflow\|keras"windows环境下piplist|findstr"numpyscipytensorflowkeras"输出numpy1.13.1scipy0.19.1tensorflow-cpu2.4.0tensorflow-estimator2.4.0tensorflow-gpu2.4.0
- 深度学习-电商推荐
小赖同学啊
人工智能深度学习人工智能
下面为你介绍使用深度学习实现电商推荐系统的代码示例。我们将构建一个基于神经网络的简单推荐模型,以用户的历史购买行为和商品特征为基础,预测用户对商品的偏好。这里我们使用Python的TensorFlow和Keras库来实现。问题分析电商推荐系统的核心目标是根据用户的历史行为和商品特征,预测用户对未购买商品的喜好程度,从而为用户推荐可能感兴趣的商品。我们将通过构建一个神经网络模型,输入用户特征和商品特
- 【深度学习实战:kaggle自然场景的图像分类-----使用keras框架实现vgg16的迁移学习】
机器学习司猫白
深度学习分类keras
Hello大家好,今天和大家分享一个kaggle自然场景的图像分类的竞赛,使用的keras框架实现vgg16的迁移学习完成自然场景分类,对数据集感兴趣的同学可以在上方下载数据集。项目简介本次数据集来自kaggle,该数据集包括自然场景的图像。模型应该预测每个图像的正确标签。您的目标是实现分类问题的高精度。数据集train.csv-训练集test.csv-测试集SceneImages-图像文件夹训练
- python预测股票 keras_使用LSTM模型预测股价基于Keras
weixin_39862899
python预测股票keras
本期作者:DerrickMwiti本期翻译:HUDPinkPig未经授权,严禁转载编者按:本文介绍了如何使用LSTM模型进行时间序列预测。股票市场的数据由于格式规整和非常容易获得,是作为研究的很好选择。但不要把本文的结论当作理财或交易建议。本文将通过构建用Python编写的深度学习模型来预测未来股价走势。虽然预测股票的实际价格非常难,但我们可以建立模型来预测股票价格是上涨还是下跌。本文使用的数据可
- TensorFlow 与 PyTorch 的直观区别
Cacciatore->
tensorflowpytorch人工智能python机器学习深度学习
背景TensorFlow与PyTorch都是比较流行的深度学习框架。tf由谷歌在2015年发布,而PyTorch则是FacecbookAI研究团队2016年在原来Torch的基础上发布的。tf采用的是静态计算图。这意味着在执行任何计算之前,你需要先定义好整个计算图,之后再执行。这种方式适合大规模生产环境,可以优化计算图以提高效率。tf的早期版本比较复杂,但在集成Keras库之后相当容易上手。PyT
- AI编程工具合集
109702008
人工智能ai编程人工智能学习
GPT-4o(OpenAI)这里是一些知名和广泛使用的AI编程工具及其简要介绍:1.框架和库(FrameworksandLibraries)-TensorFlow:由谷歌开发的开源深度学习框架,支持多种平台,适合构建和训练复杂神经网络。-PyTorch:由Facebook的人工智能研究小组开发,也是一种开源深度学习库,因其动态计算图和较好的易用性而受欢迎。-Keras:一个高层神经网络API,可以
- MobileNet实战:tensorflow2
大厂在职_xzG
tensorflow人工智能python
2、导入需要的数据包,设置全局参数importnumpyasnpfromtensorflow.keras.optimizersimportAdamimportnumpyasnpfromtensorflow.keras.optimizersimportAdamimportcv2fromtensorflow.keras.preprocessing.imageimportimg_to_arrayfrom
- 使用Python和TensorFlow/Keras构建一个简单的CNN模型来识别手写数字
mosquito_lover1
pythontensorflowkeras
一个简单的图像识别项目代码示例,使用Python和TensorFlow/Keras库来训练一个基本的CNN模型,用于识别MNIST手写数字数据集,并将测试结果输出到HTML。代码运行效果截图:具体操作步骤:1.安装所需的库首先,确保你已经安装了所需的Python库:pipinstalltensorflownumpymatplotlibpandasjinja2TensorFlow:用于构建和训练深度
- 一、TensorFlow的建模流程
李建军
TensorFlowtensorflow人工智能python
1.数据准备与预处理:加载数据:使用内置数据集或自定义数据。预处理:归一化、调整维度、数据增强。划分数据集:训练集、验证集、测试集。转换为Dataset对象:利用tf.data优化数据流水线。importtensorflowastffromtensorflow.kerasimportlayers#加载MNIST数据集(x_train,y_train),(x_test,y_test)=tf.kera
- Tensorflow 2.x(keras)源码详解之第十章:keras中的模型保存与加载(详解Checkpoint&md5&模型序列化)
爱编程的喵喵
tensorflowkeras模型保存
大家好,我是爱编程的喵喵。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。喜欢通过博客创作的方式对所学的知识进行总结与归纳,不仅形成深入且独到的理解,而且能够帮助新手快速入门。 本文主要介绍了Tensorflow2.x(kera
- TensorFlow 示例项目实战与源码解析.zip
ELSON麦香包
本文还有配套的精品资源,点击获取简介:TensorFlow是谷歌大脑团队开发的开源机器学习库,广泛应用于深度学习、人工智能等领域。该压缩包提供了一个TensorFlow示例项目的源代码,涵盖了从基础操作到复杂模型的各种主题。文章将详细介绍TensorFlow的核心概念,如张量、图计算、会话、变量、梯度下降与优化器、损失函数、数据集、模型评估、模型保存与恢复以及KerasAPI。读者可通过实践这些示
- python中keras_Python深度学习——keras(一)
weixin_39534321
python中keras
神经网络的核心组件是层(layer),它是一种数据处理模块,可以看成是一个数据过滤器。进去一些数据,出来的数据变得更加有用(吃进去的是草,挤出来的是奶)。大多数深度学习,都是将若干个简单的层给链接起来,实现渐进式的数据过滤,也就是数据蒸馏(过滤到一定程度就等同于蒸馏)首先来看一个数字识别的案例(1)读取训练集和测试集fromkeras.datasetsimportmnist#加载keras中的mn
- 关于双塔模型的简单介绍
eso1983
python算法推荐算法
双塔模型是一种常用于推荐系统和信息检索等领域的深度学习架构,其核心思想是将用户和物品分别映射到不同的向量空间,通过计算两个向量的相似度来预测用户对物品的偏好或相关性。1.python示例使用python语言来简单示例一下实现过程如下:importtensorflowastffromtensorflow.keras.layersimportInput,Dense,Embedding,Concaten
- TensorFlow:tensorflow.keras.Model.fit()报错: TypeError: Failed to convert elements of xxx
向小凯同学学习
tensorflowkeras人工智能
一、问题在使用TensorFlow进行数据训练的时候,报了下面这样的一个错误。代码如下:importtensorflowastffromutilzimport*importnumpyasnpacoustic=load_features('C:/Test/MSADatasets/data/acoustic_wav2vec.pkl')label=load_features('C:/Test/MSADa
- 解决:AttributeError: module ‘tensorflow‘ has no attribute ‘variable_scope‘
小桥流水---人工智能
Python程序代码Python常见bug算法tensorflowneo4j人工智能
AttributeError:module'tensorflow'hasnoattribute'variable_scope'报错的原因是,tf.variable_scope在TensorFlow2.x中已经被移除,而它是TensorFlow1.x的一种构建静态图的特性。在TensorFlow2.x中,可以通过tf.name_scope或者直接使用函数和KerasAPI来替代。解决方法(最推荐方法
- tf.Keras (tf-1.15)使用记录4-model.fit方法及其callbacks参数
普通攻击往后拉
NN技巧tf.keraskeras人工智能深度学习
model.fit()方法是TensorFlowKeras中用于训练模型的核心方法。其中里面的callbacks参数是实现模型保存、监控、以及和tensorboard联动的重要API1model.fit()方法的参数及使用必需参数x:训练数据的输入。可以是NumPy数组、TensorFlowtf.data.Dataset、Python生成器或keras.utils.Sequence实例。y:训练数
- 基于TensorFlow 2.0的DBN故障诊断程序
ydlhnust
深度学习
以下是一个基于TensorFlow2.0的DBN故障诊断程序,包含特征可视化和结果分析。程序使用合成振动数据进行演示,可直接运行。```pythonimportnumpyasnpimportmatplotlib.pyplotaspltimporttensorflowastffromtensorflow.kerasimportlayers,modelsfromsklearn.model_select
- Keras TypeError: unsupported operand type(s) for : 'int' and 'Dimension'
Yolo_C
kerasTypeError:unsupportedoperandtype
记录一个简单的bug在使用keras时,需要取出一个tensor的某一维作为下一层的维度(这里,我是在写attention)代码:dim=input.shape[1]dense=Dense(dim,activation=‘softmax’)(input)报错:TypeError:unsupportedoperandtype(s)for:‘int’and‘Dimension’解决:只需要将dim转化
- keras快速上手-基于python的深度学习实践-基于索引的深度学习对话模型-源代码...
weixin_34162401
该章的源代码已经调通,如下,先记录下来,再慢慢理解#!/usr/bin/envpython#coding:utf-8#In[1]:importpandasaspdimportnumpyasnpimportpickleimportkerasfromkeras.modelsimportSequential,Modelfromkeras.layersimportInput,Dense,Activatio
- 深度学习篇---深度学习框架
Ronin-Lotus
深度学习篇深度学习人工智能pythonPytorchTensorFlowpaddlepaddle
文章目录前言第一部分:框架简介1.PyTorch简介特点动态计算图易于上手强大的社区支持与Python的集成度高核心组件2.TensorFlow简介特点静态计算图跨平台强大的生态系统Keras集成核心组件3.PaddlePaddle简介特点易于使用高性能工业级应用丰富的预训练模型核心组件第二部分:基本操作PyTorch基本操作TensorFlow基本操作PaddlePaddle基本操作总结前言以上
- 超实用的Python深度学习教程 - 基于TensorFlow和Keras框架(含实例及完整代码)
AI_DL_CODE
人工智能python深度学习tensorflow
一、深度学习概述(一)深度学习的定义与发展历程深度学习在当今的科技领域占据着极为重要的地位。它是人工智能的一个重要分支,其定义为通过构建具有很多层的神经网络模型,让计算机自动从大量数据中学习复杂模式的一种技术。深度学习的发展历程可谓波澜壮阔,早期它源于对人工神经网络的研究,从简单的感知机模型开始。在发展初期,由于计算资源的限制以及数据量的不足等因素,发展较为缓慢。然而,随着计算机技术的飞速发展,尤
- 人工智能学习框架:深入解析与实战指南
一ge科研小菜鸡
人工智能人工智能
个人主页:一ge科研小菜鸡-CSDN博客期待您的关注引言随着人工智能(AI)技术的飞速发展,深度学习、强化学习和自然语言处理等领域的应用愈加广泛。掌握人工智能学习框架(如TensorFlow、PyTorch、Keras等)已成为开发智能系统、研究前沿技术的必备技能。本指南将全面介绍人工智能主流学习框架的特点、安装方法、核心功能,以及通过实践案例展示如何使用这些框架进行AI模型开发、训练与优化。1.
- PHP,安卓,UI,java,linux视频教程合集
cocos2d-x小菜
javaUIlinuxPHPandroid
╔-----------------------------------╗┆
- zookeeper admin 笔记
braveCS
zookeeper
Required Software
1) JDK>=1.6
2)推荐使用ensemble的ZooKeeper(至少3台),并run on separate machines
3)在Yahoo!,zk配置在特定的RHEL boxes里,2个cpu,2G内存,80G硬盘
数据和日志目录
1)数据目录里的文件是zk节点的持久化备份,包括快照和事务日
- Spring配置多个连接池
easterfly
spring
项目中需要同时连接多个数据库的时候,如何才能在需要用到哪个数据库就连接哪个数据库呢?
Spring中有关于dataSource的配置:
<bean id="dataSource" class="com.mchange.v2.c3p0.ComboPooledDataSource"
&nb
- Mysql
171815164
mysql
例如,你想myuser使用mypassword从任何主机连接到mysql服务器的话。
GRANT ALL PRIVILEGES ON *.* TO 'myuser'@'%'IDENTIFIED BY 'mypassword' WI
TH GRANT OPTION;
如果你想允许用户myuser从ip为192.168.1.6的主机连接到mysql服务器,并使用mypassword作
- CommonDAO(公共/基础DAO)
g21121
DAO
好久没有更新博客了,最近一段时间工作比较忙,所以请见谅,无论你是爱看呢还是爱看呢还是爱看呢,总之或许对你有些帮助。
DAO(Data Access Object)是一个数据访问(顾名思义就是与数据库打交道)接口,DAO一般在业
- 直言有讳
永夜-极光
感悟随笔
1.转载地址:http://blog.csdn.net/jasonblog/article/details/10813313
精华:
“直言有讳”是阿里巴巴提倡的一种观念,而我在此之前并没有很深刻的认识。为什么呢?就好比是读书时候做阅读理解,我喜欢我自己的解读,并不喜欢老师给的意思。在这里也是。我自己坚持的原则是互相尊重,我觉得阿里巴巴很多价值观其实是基本的做人
- 安装CentOS 7 和Win 7后,Win7 引导丢失
随便小屋
centos
一般安装双系统的顺序是先装Win7,然后在安装CentOS,这样CentOS可以引导WIN 7启动。但安装CentOS7后,却找不到Win7 的引导,稍微修改一点东西即可。
一、首先具有root 的权限。
即进入Terminal后输入命令su,然后输入密码即可
二、利用vim编辑器打开/boot/grub2/grub.cfg文件进行修改
v
- Oracle备份与恢复案例
aijuans
oracle
Oracle备份与恢复案例
一. 理解什么是数据库恢复当我们使用一个数据库时,总希望数据库的内容是可靠的、正确的,但由于计算机系统的故障(硬件故障、软件故障、网络故障、进程故障和系统故障)影响数据库系统的操作,影响数据库中数据的正确性,甚至破坏数据库,使数据库中全部或部分数据丢失。因此当发生上述故障后,希望能重构这个完整的数据库,该处理称为数据库恢复。恢复过程大致可以分为复原(Restore)与
- JavaEE开源快速开发平台G4Studio v5.0发布
無為子
我非常高兴地宣布,今天我们最新的JavaEE开源快速开发平台G4Studio_V5.0版本已经正式发布。
访问G4Studio网站
http://www.g4it.org
2013-04-06 发布G4Studio_V5.0版本
功能新增
(1). 新增了调用Oracle存储过程返回游标,并将游标映射为Java List集合对象的标
- Oracle显示根据高考分数模拟录取
百合不是茶
PL/SQL编程oracle例子模拟高考录取学习交流
题目要求:
1,创建student表和result表
2,pl/sql对学生的成绩数据进行处理
3,处理的逻辑是根据每门专业课的最低分线和总分的最低分数线自动的将录取和落选
1,创建student表,和result表
学生信息表;
create table student(
student_id number primary key,--学生id
- 优秀的领导与差劲的领导
bijian1013
领导管理团队
责任
优秀的领导:优秀的领导总是对他所负责的项目担负起责任。如果项目不幸失败了,那么他知道该受责备的人是他自己,并且敢于承认错误。
差劲的领导:差劲的领导觉得这不是他的问题,因此他会想方设法证明是他的团队不行,或是将责任归咎于团队中他不喜欢的那几个成员身上。
努力工作
优秀的领导:团队领导应该是团队成员的榜样。至少,他应该与团队中的其他成员一样努力工作。这仅仅因为他
- js函数在浏览器下的兼容
Bill_chen
jquery浏览器IEDWRext
做前端开发的工程师,少不了要用FF进行测试,纯js函数在不同浏览器下,名称也可能不同。对于IE6和FF,取得下一结点的函数就不尽相同:
IE6:node.nextSibling,对于FF是不能识别的;
FF:node.nextElementSibling,对于IE是不能识别的;
兼容解决方式:var Div = node.nextSibl
- 【JVM四】老年代垃圾回收:吞吐量垃圾收集器(Throughput GC)
bit1129
垃圾回收
吞吐量与用户线程暂停时间
衡量垃圾回收算法优劣的指标有两个:
吞吐量越高,则算法越好
暂停时间越短,则算法越好
首先说明吞吐量和暂停时间的含义。
垃圾回收时,JVM会启动几个特定的GC线程来完成垃圾回收的任务,这些GC线程与应用的用户线程产生竞争关系,共同竞争处理器资源以及CPU的执行时间。GC线程不会对用户带来的任何价值,因此,好的GC应该占
- J2EE监听器和过滤器基础
白糖_
J2EE
Servlet程序由Servlet,Filter和Listener组成,其中监听器用来监听Servlet容器上下文。
监听器通常分三类:基于Servlet上下文的ServletContex监听,基于会话的HttpSession监听和基于请求的ServletRequest监听。
ServletContex监听器
ServletContex又叫application
- 博弈AngularJS讲义(16) - 提供者
boyitech
jsAngularJSapiAngularProvider
Angular框架提供了强大的依赖注入机制,这一切都是有注入器(injector)完成. 注入器会自动实例化服务组件和符合Angular API规则的特殊对象,例如控制器,指令,过滤器动画等。
那注入器怎么知道如何去创建这些特殊的对象呢? Angular提供了5种方式让注入器创建对象,其中最基础的方式就是提供者(provider), 其余四种方式(Value, Fac
- java-写一函数f(a,b),它带有两个字符串参数并返回一串字符,该字符串只包含在两个串中都有的并按照在a中的顺序。
bylijinnan
java
public class CommonSubSequence {
/**
* 题目:写一函数f(a,b),它带有两个字符串参数并返回一串字符,该字符串只包含在两个串中都有的并按照在a中的顺序。
* 写一个版本算法复杂度O(N^2)和一个O(N) 。
*
* O(N^2):对于a中的每个字符,遍历b中的每个字符,如果相同,则拷贝到新字符串中。
* O(
- sqlserver 2000 无法验证产品密钥
Chen.H
sqlwindowsSQL ServerMicrosoft
在 Service Pack 4 (SP 4), 是运行 Microsoft Windows Server 2003、 Microsoft Windows Storage Server 2003 或 Microsoft Windows 2000 服务器上您尝试安装 Microsoft SQL Server 2000 通过卷许可协议 (VLA) 媒体。 这样做, 收到以下错误信息CD KEY的 SQ
- [新概念武器]气象战争
comsci
气象战争的发动者必须是拥有发射深空航天器能力的国家或者组织....
原因如下:
地球上的气候变化和大气层中的云层涡旋场有密切的关系,而维持一个在大气层某个层次
- oracle 中 rollup、cube、grouping 使用详解
daizj
oraclegroupingrollupcube
oracle 中 rollup、cube、grouping 使用详解 -- 使用oracle 样例表演示 转自namesliu
-- 使用oracle 的样列库,演示 rollup, cube, grouping 的用法与使用场景
--- ROLLUP , 为了理解分组的成员数量,我增加了 分组的计数 COUNT(SAL)
- 技术资料汇总分享
Dead_knight
技术资料汇总 分享
本人汇总的技术资料,分享出来,希望对大家有用。
http://pan.baidu.com/s/1jGr56uE
资料主要包含:
Workflow->工作流相关理论、框架(OSWorkflow、JBPM、Activiti、fireflow...)
Security->java安全相关资料(SSL、SSO、SpringSecurity、Shiro、JAAS...)
Ser
- 初一下学期难记忆单词背诵第一课
dcj3sjt126com
englishword
could 能够
minute 分钟
Tuesday 星期二
February 二月
eighteenth 第十八
listen 听
careful 小心的,仔细的
short 短的
heavy 重的
empty 空的
certainly 当然
carry 携带;搬运
tape 磁带
basket 蓝子
bottle 瓶
juice 汁,果汁
head 头;头部
- 截取视图的图片, 然后分享出去
dcj3sjt126com
OSObjective-C
OS 7 has a new method that allows you to draw a view hierarchy into the current graphics context. This can be used to get an UIImage very fast.
I implemented a category method on UIView to get the vi
- MySql重置密码
fanxiaolong
MySql重置密码
方法一:
在my.ini的[mysqld]字段加入:
skip-grant-tables
重启mysql服务,这时的mysql不需要密码即可登录数据库
然后进入mysql
mysql>use mysql;
mysql>更新 user set password=password('新密码') WHERE User='root';
mysq
- Ehcache(03)——Ehcache中储存缓存的方式
234390216
ehcacheMemoryStoreDiskStore存储驱除策略
Ehcache中储存缓存的方式
目录
1 堆内存(MemoryStore)
1.1 指定可用内存
1.2 驱除策略
1.3 元素过期
2 &nbs
- spring mvc中的@propertysource
jackyrong
spring mvc
在spring mvc中,在配置文件中的东西,可以在java代码中通过注解进行读取了:
@PropertySource 在spring 3.1中开始引入
比如有配置文件
config.properties
mongodb.url=1.2.3.4
mongodb.db=hello
则代码中
@PropertySource(&
- 重学单例模式
lanqiu17
单例Singleton模式
最近在重新学习设计模式,感觉对模式理解更加深刻。觉得有必要记下来。
第一个学的就是单例模式,单例模式估计是最好理解的模式了。它的作用就是防止外部创建实例,保证只有一个实例。
单例模式的常用实现方式有两种,就人们熟知的饱汉式与饥汉式,具体就不多说了。这里说下其他的实现方式
静态内部类方式:
package test.pattern.singleton.statics;
publ
- .NET开源核心运行时,且行且珍惜
netcome
java.net开源
背景
2014年11月12日,ASP.NET之父、微软云计算与企业级产品工程部执行副总裁Scott Guthrie,在Connect全球开发者在线会议上宣布,微软将开源全部.NET核心运行时,并将.NET 扩展为可在 Linux 和 Mac OS 平台上运行。.NET核心运行时将基于MIT开源许可协议发布,其中将包括执行.NET代码所需的一切项目——CLR、JIT编译器、垃圾收集器(GC)和核心
- 使用oscahe缓存技术减少与数据库的频繁交互
Everyday都不同
Web高并发oscahe缓存
此前一直不知道缓存的具体实现,只知道是把数据存储在内存中,以便下次直接从内存中读取。对于缓存的使用也没有概念,觉得缓存技术是一个比较”神秘陌生“的领域。但最近要用到缓存技术,发现还是很有必要一探究竟的。
缓存技术使用背景:一般来说,对于web项目,如果我们要什么数据直接jdbc查库好了,但是在遇到高并发的情形下,不可能每一次都是去查数据库,因为这样在高并发的情形下显得不太合理——
- Spring+Mybatis 手动控制事务
toknowme
mybatis
@Override
public boolean testDelete(String jobCode) throws Exception {
boolean flag = false;
&nbs
- 菜鸟级的android程序员面试时候需要掌握的知识点
xp9802
android
熟悉Android开发架构和API调用
掌握APP适应不同型号手机屏幕开发技巧
熟悉Android下的数据存储
熟练Android Debug Bridge Tool
熟练Eclipse/ADT及相关工具
熟悉Android框架原理及Activity生命周期
熟练进行Android UI布局
熟练使用SQLite数据库;
熟悉Android下网络通信机制,S