keras-二分类

import numpy as np
from keras.models import Sequential
from keras.layers import Dense,Dropout

# generate dummy data

x_train = np.random.random((1000,20))
y_train = np.random.randint(2,size=(1000,1))
x_test = np.random.random((100,20))
y_test = np.random.randint(2,size=(100,1))

model = Sequential()
model.add(Dense(64,input_dim=20,activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(64,activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(1,activation='sigmoid'))

model.compile(loss='binary_crossentropy',
              optimizer='rmsprop',
              metrics=['accuracy'])
model.fit(x_train,y_train,
          epochs=20,
          batch_size=128)
score = model.evaluate(x_test,y_test,batch_size=10)
print(score)

 

你可能感兴趣的:(keras)