- 半导体器件仿真:功率器件仿真_(12).器件仿真与实验数据对比
kkchenkx
信号仿真2信号处理信息可视化人工智能
器件仿真与实验数据对比在半导体器件仿真中,将仿真结果与实验数据进行对比是验证仿真模型准确性的重要步骤。这一过程不仅能够帮助我们理解仿真模型的优缺点,还可以为后续的设计优化提供指导。本节将详细讨论如何进行器件仿真与实验数据的对比,包括数据处理、对比方法和误差分析。数据处理实验数据的预处理在进行器件仿真与实验数据对比之前,首先需要对实验数据进行预处理。实验数据通常包含多个测量点,这些测量点可能受到噪声
- SpringBoot+WebSocket实现直播连麦
雨轩智能
java及Linux相关教程springbootwebsocket后端
一、引言随着互联网技术的发展,直播已成为一种主流的内容传播形式。其中,连麦功能作为直播互动的重要手段,能够有效提升用户参与感和观看体验。本文将介绍如何使用SpringBoot和WebSocket技术构建一个直播连麦系统,实现主播与观众之间的实时音视频交流和文字聊天功能。为了方便DEMO的运行,本系统基于纯内存操作实现核心业务逻辑,不依赖外部数据库或者缓存组件。二、技术设计2.1技术栈后端:Spri
- Python 数据分析实践经验与学习心得
lzzy_sj_0999
python数据分析开发语言
在当今数据驱动的时代,Python以其丰富的库和便捷的语法,成为数据分析领域的首选语言。本文将结合实际案例,分享Python数据分析的学习心得与实践经验,涵盖数据读取、清洗、分析及可视化等关键环节,希望能为大家的学习和工作提供帮助。一、数据分析必备库介绍在Python数据分析中,有几个核心库是必须掌握的,它们就像我们手中的“神兵利器”,能够高效完成各种数据分析任务。Pandas:用于数据处理和分析
- 【算法设计与分析】(三)二分搜索技术与大整数乘法
珹洺
#算法设计与分析算法
【算法设计与分析】(三)二分搜索技术与大整数乘法前言一、二分搜索技术1.为什么需要二分搜索?2.二分搜索怎么做?3.为什么说它很快?4.哪些场景会用到?二、大整数乘法1.问题来了:数字太大怎么办?2.传统方法3.用分治思想优化4.Karatsuba算法:具体怎么算?5.效率提升有多大?6.实际应用场景总结前言在上一篇博客中,我们已深入剖析了递归的本质内涵与分治法的核心思想——通过将复杂问题分解为规
- 【stm32】HAL库开发——单片机工作模式
许白掰
stm32嵌入式硬件单片机学习
目录一、单片机工作模式1.1低功耗睡眠模式(Sleep)1.2低功耗停止模式(Stop)1.3低功耗待机模式(StandBy)一、单片机工作模式1.1低功耗睡眠模式(Sleep)使用HAL_PWR_EnterSLEEPMode(PWR_MAINREGULATOR_ON,PWR_SLEEPENTRY_WFI);打开睡眠模式。由于Hal库与标准库在管理系统时钟和低功耗模式时的处理方式不同,Hal库中需
- 【算法设计与分析】(四)Strassen 矩阵
珹洺
#算法设计与分析算法矩阵线性代数
【算法设计与分析】(四)Strassen矩阵前言一、传统矩阵乘法二、Strassen矩阵乘法1.算法步骤2.效率提升三、实际应用场景四、算法的局限性与改进前言上一篇博客我们以生动形象的例子和清晰的步骤,为大家详细讲解了二分搜索技术与大整数乘法。接下来,这篇博客将带大家深入探索**Strassen矩阵**乘法,感受算法优化魅力。我的个人主页,欢迎来阅读我的其他文章https://blog.csdn.
- AI框架之Spring AI与Spring Cloud Alibaba AI使用讲解
web13688565871
面试学习路线阿里巴巴人工智能springjava
文章目录1AI框架1.1SpringAI简介1.2SpringAI使用1.2.1pom.xml1.2.2可实现的功能1.3SpringCloudAlibabaAI1.4SpringCloudAlibabaAI实践操作1.4.1pom.xml1.4.2配置文件1.4.3对接文本模型1.4.4文生图模型1.4.5语音合成模型1AI框架1.1SpringAI简介在软件开发的世界中,Java一直是企业级应
- 解锁云原生微服务架构:搭建与部署实战全攻略
奔跑吧邓邓子
必备核心技能云原生架构微服务搭建与部署实战全攻略
目录一、引言二、微服务拆分2.1拆分的必要性2.2拆分方法2.3注意事项三、服务注册与发现3.1概念与原理3.2常用组件介绍3.3实践案例四、负载均衡4.1作用与原理4.2实现方式4.3负载均衡算法4.4案例与代码实现4.4.1项目依赖配置4.4.2配置Ribbon4.4.3代码实现负载均衡调用五、容器化部署5.1容器化技术基础5.2容器化部署流程5.2.1编写Dockerfile5.2.2构建D
- 解锁Ubuntu安装:从新手到高手的通关秘籍
奔跑吧邓邓子
必备核心技能ubuntulinux安装指南
目录一、前期准备1.1明确安装目标1.2硬件要求自查1.3安装方式抉择1.4必备工具下载二、虚拟机安装Ubuntu2.1VMwareWorkstation安装与设置2.2创建虚拟机2.3安装Ubuntu系统2.4安装VMwareTools三、双系统安装Ubuntu3.1磁盘空间准备3.2制作启动U盘3.3进入BIOS/UEFI设置3.4安装过程详解四、安装常见问题与解决4.1分区问题4.2安装包错
- YOLOv13:开启目标检测新时代,手把手教你实操
奔跑吧邓邓子
必备核心技能YOLO目标检测目标跟踪人工智能实操
目录一、YOLOv13初印象1.1YOLO系列发展脉络1.2YOLOv13独特之处二、前期准备工作2.1环境搭建2.2依赖安装三、深入使用指南3.1模型验证3.2模型训练3.3模型推理四、应用案例与拓展4.1实际场景应用展示4.2与其他技术结合思路五、总结与展望一、YOLOv13初印象1.1YOLO系列发展脉络YOLO(YouOnlyLookOnce)系列算法在目标检测领域中,就如同一位不断进化的
- 从入门到实战:YOLOv13 安装与使用全攻略
奔跑吧邓邓子
必备核心技能YOLO目标跟踪人工智能安装使用全攻略
目录一、YOLOv13简介1.1目标检测与YOLO系列1.2YOLOv13核心技术亮点1.3性能优势展现二、前期准备2.1系统环境要求2.2软件依赖安装三、安装流程3.1获取源码3.2环境搭建3.3安装验证四、使用指南4.1模型验证4.2模型训练4.3模型推理4.4模型导出五、应用案例与技巧5.1实际应用场景展示5.2常见问题与解决方法5.3优化技巧分享六、总结与展望6.1YOLOv13回顾6.2
- 4-AI-业务与MCP协议结合-MCPServer实战
小沛9
人工智能javaAI编程
一、介绍本章节会开发一个简单的MCP的服务。目前的步骤是先开发一个简单的MCP的SSE模式的server集成到大模型中。后面会演示stdio模式。注册到Nacos中(重点探索模式)、将HTTP接口配置成MCP的server。大概会从这几个方面进行演示。二、Server代码展示1、POM文件org.springframework.bootspring-boot-starter-actuatororg
- NeRF-Pytorch:NeRF神经辐射场复现——Pytorch版全流程分析与测试【Ubuntu20.04】【2025最新版!!!】
那就举个栗子!
三维重建计算机视觉人工智能
一、引言在计算机视觉和计算机图形学的交叉领域中,视图合成(ViewSynthesis)一直是一个充满挑战的研究方向。传统的三维重建方法往往需要复杂的几何建模和纹理映射过程,而且在处理复杂光照和材质时效果有限。2020年,来自UCBerkeley的研究团队提出了NeuralRadianceFields(NeRF),这一革命性的方法彻底改变了我们对三维场景表示和渲染的理解。NeRF的核心思想是将三维场
- InfluxDB 3 Core 持久化机制深度解析:高可靠实时数据引擎的设计哲学与工业实践
梦想画家
数据库InfluxDB分层持久化架构
本文深入拆解InfluxDB3Core的数据持久化架构,涵盖写入流程、故障恢复、存储引擎设计,并结合物联网、金融监控等场景分析其高可靠性实现逻辑。通过对比传统时序数据库架构与性能实测数据,揭示新一代引擎如何平衡实时性与数据安全性,为大规模时序数据处理提供生产级保障。一、持久化核心机制:从写入到落盘的全链路保护1.分层持久化架构InfluxDB3Core采用三级数据保护策略:写入请求→内存缓冲区(V
- 字节跳动Java开发面试题及参考答案(综合篇)
大模型大数据攻城狮
java后端面试大厂面试大厂校招加密算法nacos线程池
HTTP与HTTPS的区别?HTTP(超文本传输协议)和HTTPS(超文本传输安全协议)主要有以下区别。从安全性角度看,HTTP是明文传输协议,数据在网络中传输时是以原始文本的形式发送的。这就好比在信件传递过程中没有进行密封,任何中间节点(如路由器、代理服务器等)都可以查看信件内容。例如,用户登录一个网站时发送的用户名和密码信息,如果是通过HTTP协议传输,很容易被窃取。而HTTPS是加密的安全协
- 【深度学习|冰川制图3】GlacierNet2:一种面向高山冰川制图的混合多模型学习架构
努力毕业的小土博^_^
论文推荐深度学习学习架构人工智能机器学习
【深度学习|冰川制图3】GlacierNet2:一种面向高山冰川制图的混合多模型学习架构【深度学习|冰川制图3】GlacierNet2:一种面向高山冰川制图的混合多模型学习架构文章目录【深度学习|冰川制图3】GlacierNet2:一种面向高山冰川制图的混合多模型学习架构引言欢迎铁子们点赞、关注、收藏!祝大家逢考必过!逢投必中!上岸上岸上岸!upupup大多数高校硕博生毕业要求需要参加学术会议,发
- 【深度学习|冰川制图4】GlacierNet2:一种面向高山冰川制图的混合多模型学习架构
努力毕业的小土博^_^
论文推荐深度学习学习架构人工智能
【深度学习|冰川制图4】GlacierNet2:一种面向高山冰川制图的混合多模型学习架构【深度学习|冰川制图4】GlacierNet2:一种面向高山冰川制图的混合多模型学习架构文章目录【深度学习|冰川制图4】GlacierNet2:一种面向高山冰川制图的混合多模型学习架构数据与方法2.1数据欢迎铁子们点赞、关注、收藏!祝大家逢考必过!逢投必中!上岸上岸上岸!upupup大多数高校硕博生毕业要求需要
- 【深度学习|冰川制图5】GlacierNet2:一种面向高山冰川制图的混合多模型学习架构
努力毕业的小土博^_^
优秀论文推荐深度学习学习人工智能
【深度学习|冰川制图5】GlacierNet2:一种面向高山冰川制图的混合多模型学习架构【深度学习|冰川制图5】GlacierNet2:一种面向高山冰川制图的混合多模型学习架构文章目录【深度学习|冰川制图5】GlacierNet2:一种面向高山冰川制图的混合多模型学习架构数据与方法2.2深度学习模型2.2.1GlacierNet模型2.2.2DeepLabV3+模型欢迎铁子们点赞、关注、收藏!祝大
- 【深度学习|学习笔记】什么是k折交叉验证?K折交叉验证的步骤详解?以及如何在K折交叉验证中选择k?
努力毕业的小土博^_^
机器学习基础算法优质笔记2深度学习学习笔记人工智能
【深度学习|学习笔记】什么是k折交叉验证?K折交叉验证的步骤详解?以及如何在K折交叉验证中选择k?【深度学习|学习笔记】什么是k折交叉验证?K折交叉验证的步骤详解?以及如何在K折交叉验证中选择k?文章目录【深度学习|学习笔记】什么是k折交叉验证?K折交叉验证的步骤详解?以及如何在K折交叉验证中选择k?一、什么是K折交叉验证?✅目的:二、K折交叉验证的发展背景三、K折交叉验证的步骤详解步骤如下:数学
- 【深度学习|学习笔记】网格搜索(GridSearchCV)和随机搜索(RandomizedSearchCV)详解,附代码。
努力毕业的小土博^_^
深度学习学习笔记深度学习学习笔记机器学习人工智能
【深度学习|学习笔记】网格搜索(GridSearchCV)和随机搜索(RandomizedSearchCV)详解,附代码。【深度学习|学习笔记】网格搜索(GridSearchCV)和随机搜索(RandomizedSearchCV)详解,附代码。文章目录【深度学习|学习笔记】网格搜索(GridSearchCV)和随机搜索(RandomizedSearchCV)详解,附代码。一、背景与发展:为什么需要
- YOLOv13:目标检测的全面攻略与实战指南
奔跑吧邓邓子
必备核心技能YOLO目标检测目标跟踪人工智能全攻略实战
目录一、YOLOv13简介1.1YOLO系列发展回顾1.2YOLOv13的特点与优势二、YOLOv13原理剖析2.1HyperACE技术详解2.2FullPAD技术详解2.3轻量级卷积替换技术详解三、YOLOv13性能对比3.1与其他YOLO版本对比3.2实际应用场景对比四、YOLOv13项目结构与使用方式4.1仓库文件结构介绍4.2快速上手步骤五、YOLOv13优化技巧5.1数据增强技巧5.2锚
- Java AI 新纪元:Spring AI 与 Spring AI Alibaba 的崛起
小沛9
SpringAIAlibabaSpringAIjava人工智能springspringaiSAA
此章节没什么营养,只是一个描述,同时也能看到AI的能力(文章基本都是AI进行生成的),小沛觉得开始不写点引言好像差了点什么东西,好像鱼离开了自行车。引言:AI时代对Java开发者的机遇与挑战,Java在AI领域的现状在当今技术飞速发展的时代,人工智能(AI)已不再是遥不可及的未来概念,而是深刻地融入到我们生活的方方面面,从智能推荐系统到自动驾驶,从自然语言处理到计算机视觉,AI正以前所未有的速度改
- Spring Boot和Spring Cloud微服务架构实战指南
Javen Fang
本文还有配套的精品资源,点击获取简介:本文介绍微服务架构的基本概念及其与SpringBoot和SpringCloud的关系。SpringBoot简化了Spring应用的初始搭建和开发流程,而SpringCloud提供了一系列微服务解决方案,如服务发现、配置中心等。通过实例说明如何搭建和配置微服务,并包含脚本配置的使用,如Docker和Kubernetes来管理微服务部署。文档和具体项目文件如"se
- 列表反转:reverse() 方法的深度剖析
测试者家园
测试开发和测试Python零基础学Python人工智能Python零基础学Python零基础职场和发展软件开发和测试智能化测试
数据结构的基本操作始终是打牢编程基础的关键。而在对列表(list)这一核心数据结构的操作中,反转(reversing)是一项既常用又容易被低估的重要操作。Python提供了原地反转的reverse()方法,与返回新序列的切片[::-1]或内置函数reversed()形成了鲜明对比。本文将全面剖析list.reverse()方法,从其语义、实现机制、适用场景,到其在测试、开发与自动化中的实际运用,力
- 基于大模型的急性结石性胆囊炎全流程预测与干预系统技术方案大纲
LCG元
大模型医疗研究-方案大纲人工智能机器学习深度学习方案大纲
目录一、引言二、术前阶段(一)疾病预测与诊断辅助(二)手术风险评估(三)手术方案制定辅助三、术中阶段(一)实时监测与风险预警(二)手术决策支持四、术后阶段(一)并发症风险预测(二)术后护理计划制定五、麻醉方案定制与优化(一)术前麻醉风险评估(二)术中麻醉管理六、统计分析与模型优化(一)数据收集与整理(二)模型性能评估(三)模型优化与更新七、实验验证与证据支持(一)回顾性队列研究(二)前瞻性随机对照
- Python开发从新手到专家:第十四章 面向对象( OOP) 程序设计
caifox菜狐狸
Python开发从新手到专家pythonOOP面向对象类继承多态静态方法
在Python开发的旅程中,我们已经探索了诸多基础概念与实用技巧,从简单的变量赋值到复杂的函数嵌套,每一步都为构建更强大的程序奠定了坚实的基础。如今,我们即将踏入一个全新的领域——面向对象程序设计(OOP)。这一章将带你领略OOP的独特魅力,它不仅是一种编程范式,更是一种全新的思考问题和解决问题的方式。面向对象程序设计的核心在于“对象”和“类”。通过将数据和操作数据的方法封装在一起,我们可以构建出
- 【Rust + Actix Web】现代后端开发:从零构建高并发 Web 应用
LCG元
前端rust前端开发语言
目录项目概述环境准备项目创建与依赖配置系统架构设计核心代码实现1.数据库模型(`src/models.rs`)2.应用状态管理(`src/state.rs`)3.核心业务逻辑(`src/handlers.rs`)4.主应用入口(`src/main.rs`)高并发优化策略1.异步处理模型2.连接池配置优化3.缓存策略设计性能测试结果部署方案Docker部署配置(`Dockerfile`)Kubern
- 微服务架构实战:案例分析与解决方案探讨
野老杂谈
微服务
摘要微服务架构以其模块化和灵活性在软件开发领域迅速崛起。然而,这种架构模式并非没有挑战。本文通过深入分析几个实际的微服务项目案例,探讨了在设计、开发和部署过程中遇到的问题,以及相应的解决方案。同时,文章还展示了微服务架构如何提升系统的可维护性和可扩展性,为读者提供了宝贵的第一手经验和最佳实践。引言微服务架构通过将应用程序拆分为一系列小型、松散耦合的服务,每个服务实现特定功能,并通过轻量级通信机制相
- 网络安全防御:蓝队重保备战与应急溯源深度解析
网安认证小马135-2173-0416
web安全安全
课程目标本课程旨在培养专业的网络安全蓝队成员,通过系统化的学习和实战演练,使学员能够掌握网络安全防御的核心技能,包括资产测绘、应急响应、系统安全应急溯源分析、网络层溯源分析以及综合攻防演练等。学员将能够熟练运用各种工具和技术,有效应对网络攻击,保障企业信息安全。具体目标如下:增强综合攻防能力:通过综合训练,学员将能够模拟攻击者和企业安全人员,开展对抗练习,提升实战能力和团队协作能力。掌握蓝队核心技
- C#工程中输出类型转换以及程序运行后控制台窗口不退出设置
nanke_yh
C#c#输出类型切换控制台窗口暂停
本想调试一个小的代码,无意间发现的两个C#工程中的小技巧点,在此记录一下。一、窗口不退出调试的代码主要是时间信息的转换与输出,为此新建了控制台应用工程,可以将调试信息打印出来。但执行后发现直接结束,控制台信息都没能看到就退出了。我们知道在C/C++中遇到这种情况一般是加上:getchar();或者system("pause");为了防止C#控制台窗口执行后闪退,需要在代码最后加上一句代码:Cons
- apache 安装linux windows
墙头上一根草
apacheinuxwindows
linux安装Apache 有两种方式一种是手动安装通过二进制的文件进行安装,另外一种就是通过yum 安装,此中安装方式,需要物理机联网。以下分别介绍两种的安装方式
通过二进制文件安装Apache需要的软件有apr,apr-util,pcre
1,安装 apr 下载地址:htt
- fill_parent、wrap_content和match_parent的区别
Cb123456
match_parentfill_parent
fill_parent、wrap_content和match_parent的区别:
1)fill_parent
设置一个构件的布局为fill_parent将强制性地使构件扩展,以填充布局单元内尽可能多的空间。这跟Windows控件的dockstyle属性大体一致。设置一个顶部布局或控件为fill_parent将强制性让它布满整个屏幕。
2) wrap_conte
- 网页自适应设计
天子之骄
htmlcss响应式设计页面自适应
网页自适应设计
网页对浏览器窗口的自适应支持变得越来越重要了。自适应响应设计更是异常火爆。再加上移动端的崛起,更是如日中天。以前为了适应不同屏幕分布率和浏览器窗口的扩大和缩小,需要设计几套css样式,用js脚本判断窗口大小,选择加载。结构臃肿,加载负担较大。现笔者经过一定时间的学习,有所心得,故分享于此,加强交流,共同进步。同时希望对大家有所
- [sql server] 分组取最大最小常用sql
一炮送你回车库
SQL Server
--分组取最大最小常用sql--测试环境if OBJECT_ID('tb') is not null drop table tb;gocreate table tb( col1 int, col2 int, Fcount int)insert into tbselect 11,20,1 union allselect 11,22,1 union allselect 1
- ImageIO写图片输出到硬盘
3213213333332132
javaimage
package awt;
import java.awt.Color;
import java.awt.Font;
import java.awt.Graphics;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imagei
- 自己的String动态数组
宝剑锋梅花香
java动态数组数组
数组还是好说,学过一两门编程语言的就知道,需要注意的是数组声明时需要把大小给它定下来,比如声明一个字符串类型的数组:String str[]=new String[10]; 但是问题就来了,每次都是大小确定的数组,我需要数组大小不固定随时变化怎么办呢? 动态数组就这样应运而生,龙哥给我们讲的是自己用代码写动态数组,并非用的ArrayList 看看字符
- pinyin4j工具类
darkranger
.net
pinyin4j工具类Java工具类 2010-04-24 00:47:00 阅读69 评论0 字号:大中小
引入pinyin4j-2.5.0.jar包:
pinyin4j是一个功能强悍的汉语拼音工具包,主要是从汉语获取各种格式和需求的拼音,功能强悍,下面看看如何使用pinyin4j。
本人以前用AscII编码提取工具,效果不理想,现在用pinyin4j简单实现了一个。功能还不是很完美,
- StarUML学习笔记----基本概念
aijuans
UML建模
介绍StarUML的基本概念,这些都是有效运用StarUML?所需要的。包括对模型、视图、图、项目、单元、方法、框架、模型块及其差异以及UML轮廓。
模型、视与图(Model, View and Diagram)
&
- Activiti最终总结
avords
Activiti id 工作流
1、流程定义ID:ProcessDefinitionId,当定义一个流程就会产生。
2、流程实例ID:ProcessInstanceId,当开始一个具体的流程时就会产生,也就是不同的流程实例ID可能有相同的流程定义ID。
3、TaskId,每一个userTask都会有一个Id这个是存在于流程实例上的。
4、TaskDefinitionKey和(ActivityImpl activityId
- 从省市区多重级联想到的,react和jquery的差别
bee1314
jqueryUIreact
在我们的前端项目里经常会用到级联的select,比如省市区这样。通常这种级联大多是动态的。比如先加载了省,点击省加载市,点击市加载区。然后数据通常ajax返回。如果没有数据则说明到了叶子节点。 针对这种场景,如果我们使用jquery来实现,要考虑很多的问题,数据部分,以及大量的dom操作。比如这个页面上显示了某个区,这时候我切换省,要把市重新初始化数据,然后区域的部分要从页面
- Eclipse快捷键大全
bijian1013
javaeclipse快捷键
Ctrl+1 快速修复(最经典的快捷键,就不用多说了)Ctrl+D: 删除当前行 Ctrl+Alt+↓ 复制当前行到下一行(复制增加)Ctrl+Alt+↑ 复制当前行到上一行(复制增加)Alt+↓ 当前行和下面一行交互位置(特别实用,可以省去先剪切,再粘贴了)Alt+↑ 当前行和上面一行交互位置(同上)Alt+← 前一个编辑的页面Alt+→ 下一个编辑的页面(当然是针对上面那条来说了)Alt+En
- js 笔记 函数
征客丶
JavaScript
一、函数的使用
1.1、定义函数变量
var vName = funcation(params){
}
1.2、函数的调用
函数变量的调用: vName(params);
函数定义时自发调用:(function(params){})(params);
1.3、函数中变量赋值
var a = 'a';
var ff
- 【Scala四】分析Spark源代码总结的Scala语法二
bit1129
scala
1. Some操作
在下面的代码中,使用了Some操作:if (self.partitioner == Some(partitioner)),那么Some(partitioner)表示什么含义?首先partitioner是方法combineByKey传入的变量,
Some的文档说明:
/** Class `Some[A]` represents existin
- java 匿名内部类
BlueSkator
java匿名内部类
组合优先于继承
Java的匿名类,就是提供了一个快捷方便的手段,令继承关系可以方便地变成组合关系
继承只有一个时候才能用,当你要求子类的实例可以替代父类实例的位置时才可以用继承。
在Java中内部类主要分为成员内部类、局部内部类、匿名内部类、静态内部类。
内部类不是很好理解,但说白了其实也就是一个类中还包含着另外一个类如同一个人是由大脑、肢体、器官等身体结果组成,而内部类相
- 盗版win装在MAC有害发热,苹果的东西不值得买,win应该不用
ljy325
游戏applewindowsXPOS
Mac mini 型号: MC270CH-A RMB:5,688
Apple 对windows的产品支持不好,有以下问题:
1.装完了xp,发现机身很热虽然没有运行任何程序!貌似显卡跑游戏发热一样,按照那样的发热量,那部机子损耗很大,使用寿命受到严重的影响!
2.反观安装了Mac os的展示机,发热量很小,运行了1天温度也没有那么高
&nbs
- 读《研磨设计模式》-代码笔记-生成器模式-Builder
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 生成器模式的意图在于将一个复杂的构建与其表示相分离,使得同样的构建过程可以创建不同的表示(GoF)
* 个人理解:
* 构建一个复杂的对象,对于创建者(Builder)来说,一是要有数据来源(rawData),二是要返回构
- JIRA与SVN插件安装
chenyu19891124
SVNjira
JIRA安装好后提交代码并要显示在JIRA上,这得需要用SVN的插件才能看见开发人员提交的代码。
1.下载svn与jira插件安装包,解压后在安装包(atlassian-jira-subversion-plugin-0.10.1)
2.解压出来的包里下的lib文件夹下的jar拷贝到(C:\Program Files\Atlassian\JIRA 4.3.4\atlassian-jira\WEB
- 常用数学思想方法
comsci
工作
对于搞工程和技术的朋友来讲,在工作中常常遇到一些实际问题,而采用常规的思维方式无法很好的解决这些问题,那么这个时候我们就需要用数学语言和数学工具,而使用数学工具的前提却是用数学思想的方法来描述问题。。下面转帖几种常用的数学思想方法,仅供学习和参考
函数思想
把某一数学问题用函数表示出来,并且利用函数探究这个问题的一般规律。这是最基本、最常用的数学方法
- pl/sql集合类型
daizj
oracle集合typepl/sql
--集合类型
/*
单行单列的数据,使用标量变量
单行多列数据,使用记录
单列多行数据,使用集合(。。。)
*集合:类似于数组也就是。pl/sql集合类型包括索引表(pl/sql table)、嵌套表(Nested Table)、变长数组(VARRAY)等
*/
/*
--集合方法
&n
- [Ofbiz]ofbiz初用
dinguangx
电商ofbiz
从github下载最新的ofbiz(截止2015-7-13),从源码进行ofbiz的试用
1. 加载测试库
ofbiz内置derby,通过下面的命令初始化测试库
./ant load-demo (与load-seed有一些区别)
2. 启动内置tomcat
./ant start
或
./startofbiz.sh
或
java -jar ofbiz.jar
&
- 结构体中最后一个元素是长度为0的数组
dcj3sjt126com
cgcc
在Linux源代码中,有很多的结构体最后都定义了一个元素个数为0个的数组,如/usr/include/linux/if_pppox.h中有这样一个结构体: struct pppoe_tag { __u16 tag_type; __u16 tag_len; &n
- Linux cp 实现强行覆盖
dcj3sjt126com
linux
发现在Fedora 10 /ubutun 里面用cp -fr src dest,即使加了-f也是不能强行覆盖的,这时怎么回事的呢?一两个文件还好说,就输几个yes吧,但是要是n多文件怎么办,那还不输死人呢?下面提供三种解决办法。 方法一
我们输入alias命令,看看系统给cp起了一个什么别名。
[root@localhost ~]# aliasalias cp=’cp -i’a
- Memcached(一)、HelloWorld
frank1234
memcached
一、简介
高性能的架构离不开缓存,分布式缓存中的佼佼者当属memcached,它通过客户端将不同的key hash到不同的memcached服务器中,而获取的时候也到相同的服务器中获取,由于不需要做集群同步,也就省去了集群间同步的开销和延迟,所以它相对于ehcache等缓存来说能更好的支持分布式应用,具有更强的横向伸缩能力。
二、客户端
选择一个memcached客户端,我这里用的是memc
- Search in Rotated Sorted Array II
hcx2013
search
Follow up for "Search in Rotated Sorted Array":What if duplicates are allowed?
Would this affect the run-time complexity? How and why?
Write a function to determine if a given ta
- Spring4新特性——更好的Java泛型操作API
jinnianshilongnian
spring4generic type
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- CentOS安装JDK
liuxingguome
centos
1、行卸载原来的:
[root@localhost opt]# rpm -qa | grep java
tzdata-java-2014g-1.el6.noarch
java-1.7.0-openjdk-1.7.0.65-2.5.1.2.el6_5.x86_64
java-1.6.0-openjdk-1.6.0.0-11.1.13.4.el6.x86_64
[root@localhost
- 二分搜索专题2-在有序二维数组中搜索一个元素
OpenMind
二维数组算法二分搜索
1,设二维数组p的每行每列都按照下标递增的顺序递增。
用数学语言描述如下:p满足
(1),对任意的x1,x2,y,如果x1<x2,则p(x1,y)<p(x2,y);
(2),对任意的x,y1,y2, 如果y1<y2,则p(x,y1)<p(x,y2);
2,问题:
给定满足1的数组p和一个整数k,求是否存在x0,y0使得p(x0,y0)=k?
3,算法分析:
(
- java 随机数 Math与Random
SaraWon
javaMathRandom
今天需要在程序中产生随机数,知道有两种方法可以使用,但是使用Math和Random的区别还不是特别清楚,看到一篇文章是关于的,觉得写的还挺不错的,原文地址是
http://www.oschina.net/question/157182_45274?sort=default&p=1#answers
产生1到10之间的随机数的两种实现方式:
//Math
Math.roun
- oracle创建表空间
tugn
oracle
create temporary tablespace TXSJ_TEMP
tempfile 'E:\Oracle\oradata\TXSJ_TEMP.dbf'
size 32m
autoextend on
next 32m maxsize 2048m
extent m
- 使用Java8实现自己的个性化搜索引擎
yangshangchuan
javasuperword搜索引擎java8全文检索
需要对249本软件著作实现句子级别全文检索,这些著作均为PDF文件,不使用现有的框架如lucene,自己实现的方法如下:
1、从PDF文件中提取文本,这里的重点是如何最大可能地还原文本。提取之后的文本,一个句子一行保存为文本文件。
2、将所有文本文件合并为一个单一的文本文件,这样,每一个句子就有一个唯一行号。
3、对每一行文本进行分词,建立倒排表,倒排表的格式为:词=包含该词的总行数N=行号