MapReduce实现词频统计

问题描述:现在有n个文本文件,使用MapReduce的方法实现词频统计。

附上统计词频的关键代码,首先是一个通用的MapReduce模块1:

class MapReduce:
    __doc__ = '''提供map_reduce功能'''

    @staticmethod
    def map_reduce(i, mapper, reducer):
        """
        map_reduce方法
        :param i: 需要MapReduce的集合
        :param mapper: 自定义mapper方法
        :param reducer: 自定义reducer方法
        :return: 以自定义reducer方法的返回值为元素的一个列表
        """
        intermediate = []  # 存放所有的(intermediate_key, intermediate_value)
        for (key, value) in i.items():
            intermediate.extend(mapper(key, value))

        # sorted返回一个排序好的list,因为list中的元素是一个个的tuple,key设定按照tuple中第几个元素排序
        # groupby把迭代器中相邻的重复元素挑出来放在一起,key设定按照tuple中第几个元素为关键字来挑选重复元素
        # 下面的循环中groupby返回的key是intermediate_key,而group是个list,是1个或多个
        # 有着相同intermediate_key的(intermediate_key, intermediate_value)
        groups = {}
        for key, group in itertools.groupby(sorted(intermediate, key=lambda im: im[0]), key=lambda x: x[0]):
            groups[key] = [y for x, y in group]
        # groups是一个字典,其key为上面说到的intermediate_key,value为所有对应intermediate_key的intermediate_value
        # 组成的一个列表
        return [reducer(intermediate_key, groups[intermediate_key]) for intermediate_key in groups]

然后需要针对词频统计这个实际问题写好自己的mapper方法和reducer方法:

class WordCount:
    __doc__ = '''词频统计'''

    def mapper(self, input_key, input_value):
        """
        词频统计的mapper方法
        :param input_key: 文件名
        :param input_value: 文本内容
        :return: 以(词,1)为元素的一个列表
        """
        return [(word, 1) for word in
                self.remove_punctuation(input_value.lower()).split()]

    def reducer(self, intermediate_key, intermediate_value_list):
        """
        词频统计的reducer方法
        :param intermediate_key: 某个词
        :param intermediate_value_list: 出现记录列表,如[1,1,1]
        :return: (词,词频)
        """
        return intermediate_key, sum(intermediate_value_list)

    @staticmethod
    def remove_punctuation(text):
        """
        去掉字符串中的标点符号
        :param text: 文本
        :return: 去掉标点的文本
        """
        return re.sub(u"\p{P}+", "", text)

用3个文本文件进行测试:

text\a.tex:
  The quick brown fox jumped over the lazy grey dogs.

text\b.txt:
  That’s one small step for a man, one giant leap for mankind.

text\c.txt:
  Mary had a little lamb,
  Its fleece was white as snow;
  And everywhere that Mary went,
  The lamb was sure to go.

调用如下:

    filenames = ["text\\a.txt", "text\\b.txt", "text\\c.txt"]
    i = {}
    for filename in filenames:
        f = open(filename)
    i[filename] = f.read()
    f.close()

    wc = WordCount()
    print(MapReduce.map_reduce(i, wc.mapper, wc.reducer))

输出结果:

[('white', 1), ('little', 1), ('sure', 1), ('snow;', 1), ('went,', 1), ('as', 1), ('lamb,', 1), ('go.', 1), ('lamb', 1), ('its', 1), ('a', 1), ('was', 2), ('to', 1), ('fleece', 1), ('that', 1), ('the', 1), ('mary', 2), ('everywhere', 1), ('had', 1), ('and', 1)]

上面提出的方法只使用了最基本的MapReduce思想,所以不支持大数据量的测试,毕竟各种调度之类的内容没有考虑到。


参考资料


  1. Write your first MapReduce program in 20 minutes ↩

你可能感兴趣的:(算法)