.NET Core玩转机器学习

ML.NET 专门为.NET开发者提供了一套跨平台的开源的机器学习框架。

ML.NET支持.NET开发者不需要过度专业的机器学习开发经验,就能轻松地训练自己的模型,并且嵌入到自己的应用中。一切尽在.NET之中。ML.NET早期是由Microsoft Research开发,近十年来逐步集成到一个大体系中被众多Microsoft产品使用,如大家熟知的Windows、Bing、PowerPoint、Excel之类。

ML.NET的第一个预览版提供了分类器(如文本分类、情感分析)和回归(如价格预测)等实用的机器学习模型。第一版发布后在既有功能之上又新增了关于训练模型的.NET API,使用这些模型进行预测,就像框架中算法、转换、数据结构一类核心组件一样的开发体验。

接下来用个示例,一起进入快速上手的实践中来。

  1. 安装.NET SDK 

    为了创建一个.NET应用,首先下载 .NET SDK。  

  2. 创建应用

    使用如下命令初始化项目,创建一个控制台应用程序,目标为myApp

    dotnet new console -o myAppcd myApp
  3. 安装ML.NET包

    使用如下命令安装Microsoft.ML包:

    dotnet add package Microsoft.ML
  4. 下载数据集

    假设我们使用机器学习来预测鸢尾花的类型,比如有setosa、versicolor、virginica三种,基于特征有四种:花瓣长度、花瓣宽度, 萼片长度、萼片宽度。

    去UCI Machine Learning Repository: Iris Data Set下载一个现成的数据集,复制粘贴其中的数据到任何一个文本编辑器中,然后保存命名为iris-data.txtmyApp目录中。

    粘贴完文本内容应该是如下格式,每一行表示不同鸢尾花的样本,数值的部分从左到右依次是萼片长度、萼片宽度、花瓣长度、花瓣宽度,最后是鸢尾花的类型。

    5.1,3.5,1.4,0.2,Iris-setosa
    4.9,3.0,1.4,0.2,Iris-setosa
    4.7,3.2,1.3,0.2,Iris-setosa
    ...

    如果是使用了Visual Studio,将iris-data.txt添加至项目中,需要进行如下配置确保运行时数据集文件在输出的目录中。

    .NET Core玩转机器学习_第1张图片

  1. 编写代码

    打开Program.cs文件,输入以下代码:

using Microsoft.ML;

using Microsoft.ML.Runtime.Api;

using Microsoft.ML.Trainers;

using Microsoft.ML.Transforms;

using System;


namespace myApp

{

    class Program

    {

        // STEP 1: Define your data structures


        // IrisData is used to provide training data, and as 

        // input for prediction operations

        // - First 4 properties are inputs/features used to predict the label

        // - Label is what you are predicting, and is only set when training

        public class IrisData

        {

            [Column("0")]

            public float SepalLength;


            [Column("1")]

            public float SepalWidth;


            [Column("2")]

            public float PetalLength;


            [Column("3")]

            public float PetalWidth;


            [Column("4")]

            [ColumnName("Label")]

            public string Label;

        }


        // IrisPrediction is the result returned from prediction operations

        public class IrisPrediction

        {

            [ColumnName("PredictedLabel")]

            public string PredictedLabels;

        }


        static void Main(string[] args)

        {

            // STEP 2: Create a pipeline and load your data

            var pipeline = new LearningPipeline();


            // If working in Visual Studio, make sure the 'Copy to Output Directory' 

            // property of iris-data.txt is set to 'Copy always'

            string dataPath = "iris-data.txt";

            pipeline.Add(new TextLoader(dataPath, separator: ","));


            // STEP 3: Transform your data

            // Assign numeric values to text in the "Label" column, because only

            // numbers can be processed during model training

            pipeline.Add(new Dictionarizer("Label"));


            // Puts all features into a vector

            pipeline.Add(new ColumnConcatenator("Features", "SepalLength", "SepalWidth", "PetalLength", "PetalWidth"));


            // STEP 4: Add learner

            // Add a learning algorithm to the pipeline. 

            // This is a classification scenario (What type of iris is this?)

            pipeline.Add(new StochasticDualCoordinateAscentClassifier());


            // Convert the Label back into original text (after converting to number in step 3)

            pipeline.Add(new PredictedLabelColumnOriginalValueConverter() { PredictedLabelColumn = "PredictedLabel" });


            // STEP 5: Train your model based on the data set

            var model = pipeline.Train();


            // STEP 6: Use your model to make a prediction

            // You can change these numbers to test different predictions

            var prediction = model.Predict(new IrisData()

            {

                SepalLength = 3.3f,

                SepalWidth = 1.6f,

                PetalLength = 0.2f,

                PetalWidth = 5.1f,

            });


            Console.WriteLine($"Predicted flower type is: {prediction.PredictedLabels}");

        }

    }

}

运行应用

使用如下命令行运行程序:

dotnet run

在最后一行将输出对花的预测结果,你可以修改传给Predict函数各种鸢尾花的特征值看看有什么不同的结果。

恭喜,你已经跨入使用ML.NET进行机器学习的门槛了!

原文地址: https://www.cnblogs.com/Wddpct/p/9002242.html


 
   

.NET社区新闻,深度好文,欢迎访问公众号文章汇总 http://www.csharpkit.com

640?wx_fmt=jpeg

你可能感兴趣的:(.NET Core玩转机器学习)