在做深度学习研究与应用的时候,经常需要爬取样本,例如,超分辨率重建,实际的训练与产品应用中,你需要爬取一些高清的图片,下面提供一个简单的爬虫:
# coding=utf-8
import re
import sys
import urllib
import os
import requests
def get_onepage_urls(onepageurl):
if not onepageurl:
print('执行结束')
return [], ''
try:
html = requests.get(onepageurl).text
except Exception as e:
print(e)
pic_urls = []
fanye_url = ''
return pic_urls, fanye_url
pic_urls = re.findall('"objURL":"(.*?)",', html, re.S)
fanye_urls = re.findall(re.compile(r'下一页'), html, flags=0)
fanye_url = 'http://image.baidu.com' + fanye_urls[0] if fanye_urls else ''
fanye_url = fanye_url + "&z=9" #z=9表示爬取特大尺寸
return pic_urls, fanye_url
def down_pic(pic_urls,localPath):
print ("need download:%d" % len(pic_urls))
if not os.path.exists(localPath): #
os.mkdir(localPath)
"""给出图片链接列表, 下载图片"""
for i, pic_url in enumerate(pic_urls):
try:
pic = requests.get(pic_url, timeout=30)
string = str(i + 1) + '.jpg'
with open(os.path.join(localPath,'%d.jpg' % i), 'wb')as f:
f.write(pic.content)
print('成功下载第%s张图片: %s' % (str(i + 1), str(pic_url)))
except Exception as e:
print('下载第%s张图片时失败: %s' % (str(i + 1), str(pic_url)))
print(e)
continue
if __name__ == '__main__':
keyword = sys.argv[1] # 关键词, 改为你想输入的词即可
url_init_first = r'http://image.baidu.com/search/flip?tn=baiduimage&ipn=r&ct=201326592&cl=2&lm=-1&st=-1&fm=result&fr=&sf=1&fmq=1497491098685_R&pv=&ic=0&nc=1&z=9&se=1&showtab=0&fb=0&width=&height=&face=0&istype=2&ie=utf-8&ctd=1497491098685%5E00_1519X735&word='
url_init = url_init_first + urllib.parse.quote(keyword, safe='/')
all_pic_urls = []
onepage_urls, fanye_url = get_onepage_urls(url_init)
all_pic_urls.extend(onepage_urls)
fanye_count = 1 # 图片所在页数,下载完后调整这里就行
while 1:
onepage_urls, fanye_url = get_onepage_urls(fanye_url)
fanye_count += 1
print('第%s页' % fanye_count)
if fanye_url == '' and onepage_urls == []:
break
all_pic_urls.extend(onepage_urls)
print ("need download:%d" % len(all_pic_urls))
down_pic(list(set(all_pic_urls)),os.path.join('./image/'+sys.argv[1]))#保存位置也可以修改
运行环境需要python3支持。