python+opencv人脸识别(人脸检测,存储人脸数据)解释超详细适合初学者

import sys

import cv2


def CatchPICFromVideo(path_name, window_name="GET_FACE", camera_idx=0, catch_pic_num=500):
    cv2.namedWindow(window_name)

    # 视频来源,可以来自一段已存好的视频,也可以直接来自USB摄像头
    cap = cv2.VideoCapture(camera_idx)#cap = cv2.VideoCapture(0)是打开本地摄像头

    #打开本地视频
    #cap =cv2.VideoCapture("/home/dong/Pictures/QQ视频20190417160108.mp4")

    # 告诉OpenCV使用人脸识别分类器
    classfier = cv2.CascadeClassifier("haarcascade_frontalface_default.xml")

    # 识别出人脸后要画的边框的颜色,RGB格式
    color = (0, 255, 0)

    num = 0
    while cap.isOpened():
        ok, frame = cap.read()  # 读取一帧数据
        print(type(frame))
        if not ok:
            break

        grey = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)  # 将当前桢图像转换成灰度图像

        # 人脸检测,1.2和2分别为图片缩放比例和需要检测的有效点数
        faceRects = classfier.detectMultiScale(grey, scaleFactor=1.2, minNeighbors=10, minSize=(32, 32))
        '''
1 grey 是输入图像
2 scaleFactor这个是每次缩小图像的比例,默认是1.1 ,我这里选用1.2
3 minNeighbors 它表明如果有15个框都重叠一起了,那这里肯定是脸部
我以前是 minNeighbors=3容易判断错误,有些不是脸部也给标记起来了,在我看来,minNeighbors可以提高精度。
4 minSize() 匹配物体的最小范围
maxSize()匹配物体的最大范围
5  flags=0:可以取如下这些值:
CASCADE_DO_CANNY_PRUNING=1, 利用canny边缘检测来排除一些边缘很少或者很多的图像区域
CASCADE_SCALE_IMAGE=2, 正常比例检测
CASCADE_FIND_BIGGEST_OBJECT=4, 只检测最大的物体

        '''
        if len(faceRects) > 0:  # 大于0则检测到人脸
            for faceRect in faceRects:  # 单独框出每一张人脸
                x, y, w, h = faceRect

                # 将当前帧保存为图片
                img_name = '%s/%d.jpg ' % (path_name, num)
                image = frame[y - 10: y + h + 10, x - 10: x + w + 10]
                cv2.imwrite(img_name, image)

                num += 1
                if num > (catch_pic_num):  # 如果超过指定最大保存数量退出循环
                    break

                # 画出矩形框
                cv2.rectangle(frame, (x - 10, y - 10), (x + w + 10, y + h + 10), color, 2)

                # 显示当前捕捉到了多少人脸图片了,这样站在那里被拍摄时心里有个数,不用两眼一抹黑傻等着
                font = cv2.FONT_HERSHEY_SIMPLEX
                cv2.putText(frame, 'num:%d' % (num), (x + 30, y + 30), font, 1, (255, 0, 255), 4)

                # 超过指定最大保存数量结束程序
        if num > (catch_pic_num): break

        # 显示图像
        cv2.imshow(window_name, frame)
        c = cv2.waitKey(10)
        #waitKey()函数的功能是不断刷新图像,频率时间为delay,单位为ms。
        if c & 0xFF == ord('q'):
            break

            # 释放摄像头并销毁所有窗口
    cap.release()
    cv2.destroyAllWindows()


if __name__ == '__main__':
    #CatchPICFromVideo("识别人脸区域")
    CatchPICFromVideo('E:\\work\\facode\\renlian-master\\data\\su')
#def CatchPICFromVideo(window_name, camera_idx, catch_pic_num, path_name):
#在函数定义中,几个参数,反别是窗口名字,摄像头系列号,捕捉照片数量,以及存储路径

在下边的人脸识别分类器中是我自己下载的opencv,下载网站是:https://opencv.org/releases.html,你也要找到这个路径并且复制到程序中,这个东西的作用主要是实现对人脸识别的功能,在安装中还有其他的功能,我也一并列在下面:

               人脸检测器(默认):haarcascade_frontalface_default.xml 
               人脸检测器(快速Harr):haarcascade_frontalface_alt2.xml 
               人脸检测器(侧视):haarcascade_profileface.xml 
               眼部检测器(左眼):haarcascade_lefteye_2splits.xml 
               眼部检测器(右眼):haarcascade_righteye_2splits.xml 
               嘴部检测器:haarcascade_mcs_mouth.xml 
               鼻子检测器:haarcascade_mcs_nose.xml 
               身体检测器:haarcascade_fullbody.xml 
               人脸检测器(快速LBP):lbpcascade_frontalface.xml

参考链接:https://blog.csdn.net/qq_42633819/article/details/81191308

你可能感兴趣的:(Python,深度学习)