使用opencv下的sift进行特征匹配(python)

1.安装opencv

首先确保安装了opencv包和vs2015,命令为:pip install opencv_python。也可以直接下载安装文件,测试代码

import cv2
import numpy as np
img = cv2.imread("1.jpg")
emptyImage = np.zeros(img.shape, np.uint8)
emptyImage2 = img.copy()
emptyImage3=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
cv2.imshow("EmptyImage3", emptyImage3)
cv2.waitKey(0)
cv2.destroyAllWindows()

2.安装opencv-contrib-python

pip install opencv-contrib-python==3.3.0.10

如果不指定版本可能会报错(......Set OPENCV_ENABLE_NONFREE CMake option and rebuild the library in function 'cv::xfeatures2d::SIFT::create')

测试代码

# coding=utf-8
import cv2
import scipy as sp

img1 = cv2.imread('x1.jpg', 0)  # queryImage
img2 = cv2.imread('x2.jpg', 0)  # trainImage

# Initiate SIFT detector
sift = cv2.xfeatures2d.SIFT_create()

# find the keypoints and descriptors with SIFT
kp1, des1 = sift.detectAndCompute(img1, None)
kp2, des2 = sift.detectAndCompute(img2, None)

# FLANN parameters
FLANN_INDEX_KDTREE = 0
index_params = dict(algorithm=FLANN_INDEX_KDTREE, trees=5)
search_params = dict(checks=50)  # or pass empty dictionary
flann = cv2.FlannBasedMatcher(index_params, search_params)
matches = flann.knnMatch(des1, des2, k=2)

print
'matches...', len(matches)
# Apply ratio test
good = []
for m, n in matches:
    if m.distance < 0.75 * n.distance:
        good.append(m)
print 'good', len(good)
# visualization
h1, w1 = img1.shape[:2]
h2, w2 = img2.shape[:2]
view = sp.zeros((max(h1, h2), w1 + w2, 3), sp.uint8)
view[:h1, :w1, 0] = img1
view[:h2, w1:, 0] = img2
view[:, :, 1] = view[:, :, 0]
view[:, :, 2] = view[:, :, 0]

for m in good:
    # draw the keypoints
    # print m.queryIdx, m.trainIdx, m.distance
    color = tuple([sp.random.randint(0, 255) for _ in range(3)])
    # print 'kp1,kp2',kp1,kp2
    cv2.line(view, (int(kp1[m.queryIdx].pt[0]), int(kp1[m.queryIdx].pt[1])),
             (int(kp2[m.trainIdx].pt[0] + w1), int(kp2[m.trainIdx].pt[1])), color)

cv2.imshow("view", view)
cv2.waitKey()

 

你可能感兴趣的:(python)