Since Linux kernel version 3.7 onwards, support has been added for signed kernel modules. When enabled, the Linux kernel will only load kernel modules that are digitally signed with the proper key. This allows further hardening of the system by disallowing unsigned kernel modules, or kernel modules signed with the wrong key, to be loaded. Malicious kernel modules are a common method for loading rootkits on a Linux system.
Module signature verification is a kernel feature, so has to be enabled through the Linux kernel configuration. You can find the necessary options under Enable loadable module support.
--- Enable loadable module support [*] Module signature verification [*] Require modules to be validly signed [*] Automatically sign all modules Which hash algorithm should modules be signed with? (Sign modules with SHA-512) --->
The option Module signature verification (CONFIG_MODULE_SIG) enables the module signature verification in the Linux kernel. It supports two approaches on signed module support: a rather permissive one and a strict one. By default, the permissive approach is used, which means that the Linux kernel module either has to have a valid signature, or no signature. With the strict approach, a valid signature must be present. In the above example, the strict approach is used by selecting Require modules to be validly signed (CONFIG_MODULE_SIG_FORCE). Another way of enabling this strict approach is to set the kernel boot option enforcemodulesig=1.
When building the Linux kernel, the kernel modules will not be signed automatically unless you select Automatically sign all modules (CONFIG_MODULE_SIG_ALL).
Finally, we need to select the hash algorithm to use with the cryptographic signature. In the above example, we use SHA-512.
When the Linux kernel is building with module signature verification support enabled, then you can use your own keys or have the Linux kernel build infrastructure create a set for you. If you want the Linux kernel build infrastructure to create it for you, just continue as you always do with a make and make modules_install. At the end of the build process, you will notice that signing_key.priv and signing_key.x509 will be available on the root of the Linux kernel sources.
If we want to use our own keys, you can use openssl to create a key pair (private key and public key). The following command, taken from kernel/Makefile, creates such a key pair.
[ req ] default_bits = 4096 distinguished_name = req_distinguished_name prompt = no string_mask = utf8only x509_extensions = myexts [ req_distinguished_name ] O = GenFic CN = Kernel Signing Key emailAddress = [email protected] [ myexts ] basicConstraints=critical,CA:FALSE keyUsage=digitalSignature subjectKeyIdentifier=hash authorityKeyIdentifier=keyid
The resulting files need to be stored as signing_key.x509 and signing_key.priv in the root of the Linux kernel source tree.
The public key part will be build inside the Linux kernel. If you configured the kernel to sign modules, this signing will take place during the make modules_install part.
Reboot with the newly configured kernel. In the output of dmesg you should be able to confirm that the proper certificate is loaded:
The kernel modules have the digital signature appended at the end. A simple hexdump can confirm if a signature is present or not:
The string ~Module signature appended~ at the end confirms that a signature is present. Of course, it does not confirm that the signature is valid or not.
To remove the signature, we can use the strip command:
If we try to load this module now, we get a failure:
This confirms that modules without a signature are not loaded.
Once the kernel boots and we have validated that the signed kernel module support works, it is important to correctly handle the keys themselves.
The private key, stored as signing_key.priv, needs to be moved to a secure location (unless you will be creating new keys for new kernels, in which case the file can be removed). Do not keep it at /usr/src/linux on production systems as malware can then easily use this key to sign the malicious kernel modules (such as rootkits) and compromise the system further.
If you ever need to manually sign a kernel module, you can use the scripts/sign-file script available in the Linux kernel source tree. It requires four arguments:
In this case, the key pair does not need to be named signing_file.priv and such, nor do they need to be in the root of the Linux kernel source tree location.
If we create a kernel package through make tarbz2-pkg, the modules in it will be signed already so we do not need to manually sign them afterwards. The signing keys themselves are not distributed with it.
In Booting a self-signed Linux kernel Greg Kroah-Hartman describes how to boot a self-signed Linux kernel from EFI. As having signed kernel module support is only secure if the Linux kernel is trusted, this is an important (and related) feature to work with.
最近在调试一个驱动的时候,用insmod加载.ko的时候,提示Required key not available,
内核配置内核在编译的时候,并不会主动去给模块签名,除非你把上述配置项打开。
另外CONFIG_MODULE_SIG=sha256指定了加密的算法
查看内核配置文件,发现上面3个配置项确实都打开了,因此肯定是ko签名的问题。原来设备中的内核是后来编译的,编译完成后我将内核单独烧录进设备(内核肯定就放在kernel的分区),而未改变文件系统(这样会造成新kernel中的数字证书已经改变,但是文件系统中的my_ko.ko未改变,而是用以前的内核中private key进行签名的)。重新完整烧录版本后,一切功能正常!
linux配置文件:
Linux的内核配置文件有两个,一个是隐含的.config文件,嵌入到主Makefile中;另一个是include/linux/autoconf.h,嵌入到各个c源文件中,它们由make config、make menuconfig、make xconfig这些过程创建。几乎所有的源文件都会通过linux/config.h而嵌入autoconf.h,如果按照通常方法建立文件依赖关系(.depend),只要更新过autoconf.h,就会造成所有源代码的重新编绎。
为了优化make过程,减少不必要的重新编绎,Linux开发了专用的mkdep工具,用它来取代gcc来生成.depend文件。mkdep在处理源文件时,忽略linux/config.h这样的头文件,识别源文件宏指令中具有"CONFIG_"特征的行。例如,如果有"#ifdef CONFIG_SMP"这样的行,它就会在.depend文件中输出$(wildcard /usr/src/linux/include/config/smp.h)。
include/config/下的文件是另一个工具split-include从autoconf.h中生成,它利用autoconf.h中的CONFIG_标记,生成与mkdep相对应的文件。例如,如果autoconf.h中有"#undef CONFIG_SMP"这一行,它就生成include/config/smp.h文件,内容为"#undef CONFIG_SMP"。这些文件名只在.depend文件中出现,内核源文件是不会嵌入它们的。每配置一次内核,运行split-include一次。split-include会检查旧的子文件的内容,确定是不是要更新它们。这样,不管autoconf.h修改日期如何,只要其配置不变,make就不会重新编绎内核。
如果系统的编绎选项发生了变化,Linux也能进行增量编绎。为了做到这一点,make每编绎一个源文件时生成一个flags文件。例如编绎sched.c时,会在相同的目录下生成隐含的.sched.o.flags文件。它是Makefile的一个片断,当make进入某个子目录编绎时,会搜索其中的flags文件,将它们嵌入到Makefile中。这些flags代码测试当前的编绎选项与原来的是不是相同,如果相同,就将自已对应的目标文件加入FILES_FLAGS_UP_TO_DATE列表,然后,系统从编绎对象表中删除它们,得到FILES_FLAGS_CHANGED列表,最后,将它们设为目标进行更新。