给定一个整数数组 nums
,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。
示例:
输入: [-2,1,-3,4,-1,2,1,-5,4],
输出: 6
解释: 连续子数组 [4,-1,2,1] 的和最大,为 6。
进阶:
如果你已经实现复杂度为 O(n) 的解法,尝试使用更为精妙的分治法求解。
解题方法如下:
1.暴力求解。基本思路就是遍历一遍,用两个变量,一个记录最大的和,一个记录当前的和。时空复杂度貌似还不错......(时间复杂度o(n),空间复杂度o(l))
class Solution:
def maxSubArray(self, nums: List[int]) -> int:
tmp = nums[0]
max_ = tmp
n = len(nums)
for i in range(1,n):
# 当当前序列加上此时的元素的值大于tmp的值,说明最大序列和可能出现在后续序列中,记录此时的最大值
if tmp + nums[i]>nums[i]:
max_ = max(max_, tmp+nums[i])
tmp = tmp + nums[i]
else:
#当tmp(当前和)小于下一个元素时,当前最长序列到此为止。以该元素为起点继续找最大子序列,
# 并记录此时的最大值
max_ = max(max_, tmp, tmp+nums[i], nums[i])
tmp = nums[i]
return max_
2、分治法。其实就是它的最大子序和要么在左半边,要么在右半边,要么是穿过中间,对于左右边的序列,情况也是一样,因此可以用递归处理。中间部分的则可以直接计算出来,时间复杂度应该是o(nlogn)。代码如下:
class Solution:
def maxSubArray(self, nums: List[int]) -> int:
n = len(nums)
#递归终止条件
if n == 1:
return nums[0]
else:
#递归计算左半边最大子序和
max_left = self.maxSubArray(nums[0:len(nums) // 2])
#递归计算右半边最大子序和
max_right = self.maxSubArray(nums[len(nums) // 2:len(nums)])
#计算中间的最大子序和,从右到左计算左边的最大子序和,从左到右计算右边的最大子序和,再相加
max_l = nums[len(nums) // 2 - 1]
tmp = 0
for i in range(len(nums) // 2 - 1, -1, -1):
tmp += nums[i]
max_l = max(tmp, max_l)
max_r = nums[len(nums) // 2]
tmp = 0
for i in range(len(nums) // 2, len(nums)):
tmp += nums[i]
max_r = max(tmp, max_r)
#返回三个中的最大值
return max(max_right,max_left,max_l+max_r)
3、直接引入python库解决
class Solution:
def maxSubArray(self, nums):
from functools import reduce
return reduce(lambda r, x: (max(r[0], r[1]+x), max(r[1]+x,x)), nums, (max(nums), 0))[0]
#r[0]代表以当前位置为结尾的局部最优解
#r[1]代表全局最优解