python算法之 最大子序和

给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。

示例:

输入: [-2,1,-3,4,-1,2,1,-5,4],
输出: 6
解释: 连续子数组 [4,-1,2,1] 的和最大,为 6。

进阶:

如果你已经实现复杂度为 O(n) 的解法,尝试使用更为精妙的分治法求解。

解题方法如下:


1.暴力求解。基本思路就是遍历一遍,用两个变量,一个记录最大的和,一个记录当前的和。时空复杂度貌似还不错......(时间复杂度o(n),空间复杂度o(l))

class Solution:
    def maxSubArray(self, nums: List[int]) -> int:
        tmp = nums[0]
        max_ = tmp
        n = len(nums)
        for i in range(1,n):
            # 当当前序列加上此时的元素的值大于tmp的值,说明最大序列和可能出现在后续序列中,记录此时的最大值
            if tmp + nums[i]>nums[i]:
                max_ = max(max_, tmp+nums[i])
                tmp = tmp + nums[i]
            else:
            #当tmp(当前和)小于下一个元素时,当前最长序列到此为止。以该元素为起点继续找最大子序列,
            # 并记录此时的最大值
                max_ = max(max_, tmp, tmp+nums[i], nums[i])
                tmp = nums[i]
        return max_

        
2、分治法。其实就是它的最大子序和要么在左半边,要么在右半边,要么是穿过中间,对于左右边的序列,情况也是一样,因此可以用递归处理。中间部分的则可以直接计算出来,时间复杂度应该是o(nlogn)。代码如下:

class Solution:
    def maxSubArray(self, nums: List[int]) -> int:
        n = len(nums)
        #递归终止条件
        if n == 1:
            return nums[0]
        else:
            #递归计算左半边最大子序和
            max_left = self.maxSubArray(nums[0:len(nums) // 2])
            #递归计算右半边最大子序和
            max_right = self.maxSubArray(nums[len(nums) // 2:len(nums)])
        
        #计算中间的最大子序和,从右到左计算左边的最大子序和,从左到右计算右边的最大子序和,再相加
        max_l = nums[len(nums) // 2 - 1]
        tmp = 0
        for i in range(len(nums) // 2 - 1, -1, -1):
            tmp += nums[i]
            max_l = max(tmp, max_l)
        max_r = nums[len(nums) // 2]
        tmp = 0
        for i in range(len(nums) // 2, len(nums)):
            tmp += nums[i]
            max_r = max(tmp, max_r)
        #返回三个中的最大值
        return max(max_right,max_left,max_l+max_r)


3、直接引入python库解决

class Solution:
    def maxSubArray(self, nums):
        from functools import reduce
        return reduce(lambda r, x: (max(r[0], r[1]+x), max(r[1]+x,x)), nums, (max(nums), 0))[0]

#r[0]代表以当前位置为结尾的局部最优解

#r[1]代表全局最优解

 

你可能感兴趣的:(Python)