机器学习的方法

机器学习(machine learning)是一门多领域交叉学科,涉及了概率论、统计学、算法复杂度等多门学科。专门研究计算机怎样模拟或实现人的学习行为,它能够发现和挖掘数据所包含的潜在价值。机器学习已经成为了人工智能的一个分支,通过自学习算法,发现和挖掘数据潜在的规律,从而对未知的数据进行预测。机器学习已经广泛的运用在了,计算机科学研究、自然语言处理、机器视觉、语音、游戏等。机器学习的方法主要分为三种,监督学习(supervised learging)、无监督学习(unsupervised learning)、强化学习(reinforcement learning),下面将介绍这三种方法的本质区别以及它们的应用领域。

一、监督学习

机器学习的方法_第1张图片

上图展示了监督学习训练模型的过程,在监督学习中的训练数据是带类标的。监督学习通过使用有类标的训练数据构建模型,我们可以通过训练得到的模型对未知的数据进行预测。比如,在对手写数字识别所使用的机器学习算法就属于监督学习,在训练模型之前,我们需要先定义那张图片表示的是数字几,以便计算机从数据中提取特征更好的像类标靠近。监督学习可以被分为分类和回归,像上面手写数字的识别就属于监督学习中的分类,像房间的预测就属于回归。

你可能感兴趣的:(机器学习,python机器学习)