本章对Java.util.concurrent包中的ConcurrentHashMap类进行详细的介绍。内容包括:
ConcurrentLinkedQueue介绍
ConcurrentLinkedQueue原理和数据结构
ConcurrentLinkedQueue函数列表
ConcurrentLinkedQueue源码分析(JDK1.7.0_40版本)
ConcurrentLinkedQueue示例
转载请注明出处:http://www.cnblogs.com/skywang12345/p/3498995.html
ConcurrentLinkedQueue是线程安全的队列,它适用于“高并发”的场景。
它是一个基于链接节点的无界线程安全队列,按照 FIFO(先进先出)原则对元素进行排序。队列元素中不可以放置null元素(内部实现的特殊节点除外)。
ConcurrentLinkedQueue的数据结构,如下图所示:
说明:
1. ConcurrentLinkedQueue继承于AbstractQueue。
2. ConcurrentLinkedQueue内部是通过链表来实现的。它同时包含链表的头节点head和尾节点tail。ConcurrentLinkedQueue按照 FIFO(先进先出)原则对元素进行排序。元素都是从尾部插入到链表,从头部开始返回。
3. ConcurrentLinkedQueue的链表Node中的next的类型是volatile,而且链表数据item的类型也是volatile。关于volatile,我们知道它的语义包含:“即对一个volatile变量的读,总是能看到(任意线程)对这个volatile变量最后的写入”。ConcurrentLinkedQueue就是通过volatile来实现多线程对竞争资源的互斥访问的。
// 创建一个最初为空的 ConcurrentLinkedQueue。 ConcurrentLinkedQueue() // 创建一个最初包含给定 collection 元素的 ConcurrentLinkedQueue,按照此 collection 迭代器的遍历顺序来添加元素。 ConcurrentLinkedQueue(Collection<? extends E> c) // 将指定元素插入此队列的尾部。 boolean add(E e) // 如果此队列包含指定元素,则返回 true。 boolean contains(Object o) // 如果此队列不包含任何元素,则返回 true。 boolean isEmpty() // 返回在此队列元素上以恰当顺序进行迭代的迭代器。 Iterator<E> iterator() // 将指定元素插入此队列的尾部。 boolean offer(E e) // 获取但不移除此队列的头;如果此队列为空,则返回 null。 E peek() // 获取并移除此队列的头,如果此队列为空,则返回 null。 E poll() // 从队列中移除指定元素的单个实例(如果存在)。 boolean remove(Object o) // 返回此队列中的元素数量。 int size() // 返回以恰当顺序包含此队列所有元素的数组。 Object[] toArray() // 返回以恰当顺序包含此队列所有元素的数组;返回数组的运行时类型是指定数组的运行时类型。
<T> T[] toArray(T[] a)
ConcurrentLinkedQueue的完整源码如下:
1 /* 2 * ORACLE PROPRIETARY/CONFIDENTIAL. Use is subject to license terms. 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10 * 11 * 12 * 13 * 14 * 15 * 16 * 17 * 18 * 19 * 20 * 21 * 22 * 23 */ 24 25 /* 26 * 27 * 28 * 29 * 30 * 31 * Written by Doug Lea and Martin Buchholz with assistance from members of 32 * JCP JSR-166 Expert Group and released to the public domain, as explained 33 * at http://creativecommons.org/publicdomain/zero/1.0/ 34 */ 35 36 package java.util.concurrent; 37 38 import java.util.AbstractQueue; 39 import java.util.ArrayList; 40 import java.util.Collection; 41 import java.util.Iterator; 42 import java.util.NoSuchElementException; 43 import java.util.Queue; 44 45 /** 46 * An unbounded thread-safe {@linkplain Queue queue} based on linked nodes. 47 * This queue orders elements FIFO (first-in-first-out). 48 * The <em>head</em> of the queue is that element that has been on the 49 * queue the longest time. 50 * The <em>tail</em> of the queue is that element that has been on the 51 * queue the shortest time. New elements 52 * are inserted at the tail of the queue, and the queue retrieval 53 * operations obtain elements at the head of the queue. 54 * A {@code ConcurrentLinkedQueue} is an appropriate choice when 55 * many threads will share access to a common collection. 56 * Like most other concurrent collection implementations, this class 57 * does not permit the use of {@code null} elements. 58 * 59 * <p>This implementation employs an efficient "wait-free" 60 * algorithm based on one described in <a 61 * href="http://www.cs.rochester.edu/u/michael/PODC96.html"> Simple, 62 * Fast, and Practical Non-Blocking and Blocking Concurrent Queue 63 * Algorithms</a> by Maged M. Michael and Michael L. Scott. 64 * 65 * <p>Iterators are <i>weakly consistent</i>, returning elements 66 * reflecting the state of the queue at some point at or since the 67 * creation of the iterator. They do <em>not</em> throw {@link 68 * java.util.ConcurrentModificationException}, and may proceed concurrently 69 * with other operations. Elements contained in the queue since the creation 70 * of the iterator will be returned exactly once. 71 * 72 * <p>Beware that, unlike in most collections, the {@code size} method 73 * is <em>NOT</em> a constant-time operation. Because of the 74 * asynchronous nature of these queues, determining the current number 75 * of elements requires a traversal of the elements, and so may report 76 * inaccurate results if this collection is modified during traversal. 77 * Additionally, the bulk operations {@code addAll}, 78 * {@code removeAll}, {@code retainAll}, {@code containsAll}, 79 * {@code equals}, and {@code toArray} are <em>not</em> guaranteed 80 * to be performed atomically. For example, an iterator operating 81 * concurrently with an {@code addAll} operation might view only some 82 * of the added elements. 83 * 84 * <p>This class and its iterator implement all of the <em>optional</em> 85 * methods of the {@link Queue} and {@link Iterator} interfaces. 86 * 87 * <p>Memory consistency effects: As with other concurrent 88 * collections, actions in a thread prior to placing an object into a 89 * {@code ConcurrentLinkedQueue} 90 * <a href="package-summary.html#MemoryVisibility"><i>happen-before</i></a> 91 * actions subsequent to the access or removal of that element from 92 * the {@code ConcurrentLinkedQueue} in another thread. 93 * 94 * <p>This class is a member of the 95 * <a href="{@docRoot}/../technotes/guides/collections/index.html"> 96 * Java Collections Framework</a>. 97 * 98 * @since 1.5 99 * @author Doug Lea 100 * @param <E> the type of elements held in this collection 101 * 102 */ 103 public class ConcurrentLinkedQueue<E> extends AbstractQueue<E> 104 implements Queue<E>, java.io.Serializable { 105 private static final long serialVersionUID = 196745693267521676L; 106 107 /* 108 * This is a modification of the Michael & Scott algorithm, 109 * adapted for a garbage-collected environment, with support for 110 * interior node deletion (to support remove(Object)). For 111 * explanation, read the paper. 112 * 113 * Note that like most non-blocking algorithms in this package, 114 * this implementation relies on the fact that in garbage 115 * collected systems, there is no possibility of ABA problems due 116 * to recycled nodes, so there is no need to use "counted 117 * pointers" or related techniques seen in versions used in 118 * non-GC'ed settings. 119 * 120 * The fundamental invariants are: 121 * - There is exactly one (last) Node with a null next reference, 122 * which is CASed when enqueueing. This last Node can be 123 * reached in O(1) time from tail, but tail is merely an 124 * optimization - it can always be reached in O(N) time from 125 * head as well. 126 * - The elements contained in the queue are the non-null items in 127 * Nodes that are reachable from head. CASing the item 128 * reference of a Node to null atomically removes it from the 129 * queue. Reachability of all elements from head must remain 130 * true even in the case of concurrent modifications that cause 131 * head to advance. A dequeued Node may remain in use 132 * indefinitely due to creation of an Iterator or simply a 133 * poll() that has lost its time slice. 134 * 135 * The above might appear to imply that all Nodes are GC-reachable 136 * from a predecessor dequeued Node. That would cause two problems: 137 * - allow a rogue Iterator to cause unbounded memory retention 138 * - cause cross-generational linking of old Nodes to new Nodes if 139 * a Node was tenured while live, which generational GCs have a 140 * hard time dealing with, causing repeated major collections. 141 * However, only non-deleted Nodes need to be reachable from 142 * dequeued Nodes, and reachability does not necessarily have to 143 * be of the kind understood by the GC. We use the trick of 144 * linking a Node that has just been dequeued to itself. Such a 145 * self-link implicitly means to advance to head. 146 * 147 * Both head and tail are permitted to lag. In fact, failing to 148 * update them every time one could is a significant optimization 149 * (fewer CASes). As with LinkedTransferQueue (see the internal 150 * documentation for that class), we use a slack threshold of two; 151 * that is, we update head/tail when the current pointer appears 152 * to be two or more steps away from the first/last node. 153 * 154 * Since head and tail are updated concurrently and independently, 155 * it is possible for tail to lag behind head (why not)? 156 * 157 * CASing a Node's item reference to null atomically removes the 158 * element from the queue. Iterators skip over Nodes with null 159 * items. Prior implementations of this class had a race between 160 * poll() and remove(Object) where the same element would appear 161 * to be successfully removed by two concurrent operations. The 162 * method remove(Object) also lazily unlinks deleted Nodes, but 163 * this is merely an optimization. 164 * 165 * When constructing a Node (before enqueuing it) we avoid paying 166 * for a volatile write to item by using Unsafe.putObject instead 167 * of a normal write. This allows the cost of enqueue to be 168 * "one-and-a-half" CASes. 169 * 170 * Both head and tail may or may not point to a Node with a 171 * non-null item. If the queue is empty, all items must of course 172 * be null. Upon creation, both head and tail refer to a dummy 173 * Node with null item. Both head and tail are only updated using 174 * CAS, so they never regress, although again this is merely an 175 * optimization. 176 */ 177 178 private static class Node<E> { 179 volatile E item; 180 volatile Node<E> next; 181 182 /** 183 * Constructs a new node. Uses relaxed write because item can 184 * only be seen after publication via casNext. 185 */ 186 Node(E item) { 187 UNSAFE.putObject(this, itemOffset, item); 188 } 189 190 boolean casItem(E cmp, E val) { 191 return UNSAFE.compareAndSwapObject(this, itemOffset, cmp, val); 192 } 193 194 void lazySetNext(Node<E> val) { 195 UNSAFE.putOrderedObject(this, nextOffset, val); 196 } 197 198 boolean casNext(Node<E> cmp, Node<E> val) { 199 return UNSAFE.compareAndSwapObject(this, nextOffset, cmp, val); 200 } 201 202 // Unsafe mechanics 203 204 private static final sun.misc.Unsafe UNSAFE; 205 private static final long itemOffset; 206 private static final long nextOffset; 207 208 static { 209 try { 210 UNSAFE = sun.misc.Unsafe.getUnsafe(); 211 Class k = Node.class; 212 itemOffset = UNSAFE.objectFieldOffset 213 (k.getDeclaredField("item")); 214 nextOffset = UNSAFE.objectFieldOffset 215 (k.getDeclaredField("next")); 216 } catch (Exception e) { 217 throw new Error(e); 218 } 219 } 220 } 221 222 /** 223 * A node from which the first live (non-deleted) node (if any) 224 * can be reached in O(1) time. 225 * Invariants: 226 * - all live nodes are reachable from head via succ() 227 * - head != null 228 * - (tmp = head).next != tmp || tmp != head 229 * Non-invariants: 230 * - head.item may or may not be null. 231 * - it is permitted for tail to lag behind head, that is, for tail 232 * to not be reachable from head! 233 */ 234 private transient volatile Node<E> head; 235 236 /** 237 * A node from which the last node on list (that is, the unique 238 * node with node.next == null) can be reached in O(1) time. 239 * Invariants: 240 * - the last node is always reachable from tail via succ() 241 * - tail != null 242 * Non-invariants: 243 * - tail.item may or may not be null. 244 * - it is permitted for tail to lag behind head, that is, for tail 245 * to not be reachable from head! 246 * - tail.next may or may not be self-pointing to tail. 247 */ 248 private transient volatile Node<E> tail; 249 250 251 /** 252 * Creates a {@code ConcurrentLinkedQueue} that is initially empty. 253 */ 254 public ConcurrentLinkedQueue() { 255 head = tail = new Node<E>(null); 256 } 257 258 /** 259 * Creates a {@code ConcurrentLinkedQueue} 260 * initially containing the elements of the given collection, 261 * added in traversal order of the collection's iterator. 262 * 263 * @param c the collection of elements to initially contain 264 * @throws NullPointerException if the specified collection or any 265 * of its elements are null 266 */ 267 public ConcurrentLinkedQueue(Collection<? extends E> c) { 268 Node<E> h = null, t = null; 269 for (E e : c) { 270 checkNotNull(e); 271 Node<E> newNode = new Node<E>(e); 272 if (h == null) 273 h = t = newNode; 274 else { 275 t.lazySetNext(newNode); 276 t = newNode; 277 } 278 } 279 if (h == null) 280 h = t = new Node<E>(null); 281 head = h; 282 tail = t; 283 } 284 285 // Have to override just to update the javadoc 286 287 /** 288 * Inserts the specified element at the tail of this queue. 289 * As the queue is unbounded, this method will never throw 290 * {@link IllegalStateException} or return {@code false}. 291 * 292 * @return {@code true} (as specified by {@link Collection#add}) 293 * @throws NullPointerException if the specified element is null 294 */ 295 public boolean add(E e) { 296 return offer(e); 297 } 298 299 /** 300 * Try to CAS head to p. If successful, repoint old head to itself 301 * as sentinel for succ(), below. 302 */ 303 final void updateHead(Node<E> h, Node<E> p) { 304 if (h != p && casHead(h, p)) 305 h.lazySetNext(h); 306 } 307 308 /** 309 * Returns the successor of p, or the head node if p.next has been 310 * linked to self, which will only be true if traversing with a 311 * stale pointer that is now off the list. 312 */ 313 final Node<E> succ(Node<E> p) { 314 Node<E> next = p.next; 315 return (p == next) ? head : next; 316 } 317 318 /** 319 * Inserts the specified element at the tail of this queue. 320 * As the queue is unbounded, this method will never return {@code false}. 321 * 322 * @return {@code true} (as specified by {@link Queue#offer}) 323 * @throws NullPointerException if the specified element is null 324 */ 325 public boolean offer(E e) { 326 checkNotNull(e); 327 final Node<E> newNode = new Node<E>(e); 328 329 for (Node<E> t = tail, p = t;;) { 330 Node<E> q = p.next; 331 if (q == null) { 332 // p is last node 333 if (p.casNext(null, newNode)) { 334 // Successful CAS is the linearization point 335 // for e to become an element of this queue, 336 // and for newNode to become "live". 337 if (p != t) // hop two nodes at a time 338 casTail(t, newNode); // Failure is OK. 339 return true; 340 } 341 // Lost CAS race to another thread; re-read next 342 } 343 else if (p == q) 344 // We have fallen off list. If tail is unchanged, it 345 // will also be off-list, in which case we need to 346 // jump to head, from which all live nodes are always 347 // reachable. Else the new tail is a better bet. 348 p = (t != (t = tail)) ? t : head; 349 else 350 // Check for tail updates after two hops. 351 p = (p != t && t != (t = tail)) ? t : q; 352 } 353 } 354 355 public E poll() { 356 restartFromHead: 357 for (;;) { 358 for (Node<E> h = head, p = h, q;;) { 359 E item = p.item; 360 361 if (item != null && p.casItem(item, null)) { 362 // Successful CAS is the linearization point 363 // for item to be removed from this queue. 364 if (p != h) // hop two nodes at a time 365 updateHead(h, ((q = p.next) != null) ? q : p); 366 return item; 367 } 368 else if ((q = p.next) == null) { 369 updateHead(h, p); 370 return null; 371 } 372 else if (p == q) 373 continue restartFromHead; 374 else 375 p = q; 376 } 377 } 378 } 379 380 public E peek() { 381 restartFromHead: 382 for (;;) { 383 for (Node<E> h = head, p = h, q;;) { 384 E item = p.item; 385 if (item != null || (q = p.next) == null) { 386 updateHead(h, p); 387 return item; 388 } 389 else if (p == q) 390 continue restartFromHead; 391 else 392 p = q; 393 } 394 } 395 } 396 397 /** 398 * Returns the first live (non-deleted) node on list, or null if none. 399 * This is yet another variant of poll/peek; here returning the 400 * first node, not element. We could make peek() a wrapper around 401 * first(), but that would cost an extra volatile read of item, 402 * and the need to add a retry loop to deal with the possibility 403 * of losing a race to a concurrent poll(). 404 */ 405 Node<E> first() { 406 restartFromHead: 407 for (;;) { 408 for (Node<E> h = head, p = h, q;;) { 409 boolean hasItem = (p.item != null); 410 if (hasItem || (q = p.next) == null) { 411 updateHead(h, p); 412 return hasItem ? p : null; 413 } 414 else if (p == q) 415 continue restartFromHead; 416 else 417 p = q; 418 } 419 } 420 } 421 422 /** 423 * Returns {@code true} if this queue contains no elements. 424 * 425 * @return {@code true} if this queue contains no elements 426 */ 427 public boolean isEmpty() { 428 return first() == null; 429 } 430 431 /** 432 * Returns the number of elements in this queue. If this queue 433 * contains more than {@code Integer.MAX_VALUE} elements, returns 434 * {@code Integer.MAX_VALUE}. 435 * 436 * <p>Beware that, unlike in most collections, this method is 437 * <em>NOT</em> a constant-time operation. Because of the 438 * asynchronous nature of these queues, determining the current 439 * number of elements requires an O(n) traversal. 440 * Additionally, if elements are added or removed during execution 441 * of this method, the returned result may be inaccurate. Thus, 442 * this method is typically not very useful in concurrent 443 * applications. 444 * 445 * @return the number of elements in this queue 446 */ 447 public int size() { 448 int count = 0; 449 for (Node<E> p = first(); p != null; p = succ(p)) 450 if (p.item != null) 451 // Collection.size() spec says to max out 452 if (++count == Integer.MAX_VALUE) 453 break; 454 return count; 455 } 456 457 /** 458 * Returns {@code true} if this queue contains the specified element. 459 * More formally, returns {@code true} if and only if this queue contains 460 * at least one element {@code e} such that {@code o.equals(e)}. 461 * 462 * @param o object to be checked for containment in this queue 463 * @return {@code true} if this queue contains the specified element 464 */ 465 public boolean contains(Object o) { 466 if (o == null) return false; 467 for (Node<E> p = first(); p != null; p = succ(p)) { 468 E item = p.item; 469 if (item != null && o.equals(item)) 470 return true; 471 } 472 return false; 473 } 474 475 /** 476 * Removes a single instance of the specified element from this queue, 477 * if it is present. More formally, removes an element {@code e} such 478 * that {@code o.equals(e)}, if this queue contains one or more such 479 * elements. 480 * Returns {@code true} if this queue contained the specified element 481 * (or equivalently, if this queue changed as a result of the call). 482 * 483 * @param o element to be removed from this queue, if present 484 * @return {@code true} if this queue changed as a result of the call 485 */ 486 public boolean remove(Object o) { 487 if (o == null) return false; 488 Node<E> pred = null; 489 for (Node<E> p = first(); p != null; p = succ(p)) { 490 E item = p.item; 491 if (item != null && 492 o.equals(item) && 493 p.casItem(item, null)) { 494 Node<E> next = succ(p); 495 if (pred != null && next != null) 496 pred.casNext(p, next); 497 return true; 498 } 499 pred = p; 500 } 501 return false; 502 } 503 504 /** 505 * Appends all of the elements in the specified collection to the end of 506 * this queue, in the order that they are returned by the specified 507 * collection's iterator. Attempts to {@code addAll} of a queue to 508 * itself result in {@code IllegalArgumentException}. 509 * 510 * @param c the elements to be inserted into this queue 511 * @return {@code true} if this queue changed as a result of the call 512 * @throws NullPointerException if the specified collection or any 513 * of its elements are null 514 * @throws IllegalArgumentException if the collection is this queue 515 */ 516 public boolean addAll(Collection<? extends E> c) { 517 if (c == this) 518 // As historically specified in AbstractQueue#addAll 519 throw new IllegalArgumentException(); 520 521 // Copy c into a private chain of Nodes 522 Node<E> beginningOfTheEnd = null, last = null; 523 for (E e : c) { 524 checkNotNull(e); 525 Node<E> newNode = new Node<E>(e); 526 if (beginningOfTheEnd == null) 527 beginningOfTheEnd = last = newNode; 528 else { 529 last.lazySetNext(newNode); 530 last = newNode; 531 } 532 } 533 if (beginningOfTheEnd == null) 534 return false; 535 536 // Atomically append the chain at the tail of this collection 537 for (Node<E> t = tail, p = t;;) { 538 Node<E> q = p.next; 539 if (q == null) { 540 // p is last node 541 if (p.casNext(null, beginningOfTheEnd)) { 542 // Successful CAS is the linearization point 543 // for all elements to be added to this queue. 544 if (!casTail(t, last)) { 545 // Try a little harder to update tail, 546 // since we may be adding many elements. 547 t = tail; 548 if (last.next == null) 549 casTail(t, last); 550 } 551 return true; 552 } 553 // Lost CAS race to another thread; re-read next 554 } 555 else if (p == q) 556 // We have fallen off list. If tail is unchanged, it 557 // will also be off-list, in which case we need to 558 // jump to head, from which all live nodes are always 559 // reachable. Else the new tail is a better bet. 560 p = (t != (t = tail)) ? t : head; 561 else 562 // Check for tail updates after two hops. 563 p = (p != t && t != (t = tail)) ? t : q; 564 } 565 } 566 567 /** 568 * Returns an array containing all of the elements in this queue, in 569 * proper sequence. 570 * 571 * <p>The returned array will be "safe" in that no references to it are 572 * maintained by this queue. (In other words, this method must allocate 573 * a new array). The caller is thus free to modify the returned array. 574 * 575 * <p>This method acts as bridge between array-based and collection-based 576 * APIs. 577 * 578 * @return an array containing all of the elements in this queue 579 */ 580 public Object[] toArray() { 581 // Use ArrayList to deal with resizing. 582 ArrayList<E> al = new ArrayList<E>(); 583 for (Node<E> p = first(); p != null; p = succ(p)) { 584 E item = p.item; 585 if (item != null) 586 al.add(item); 587 } 588 return al.toArray(); 589 } 590 591 /** 592 * Returns an array containing all of the elements in this queue, in 593 * proper sequence; the runtime type of the returned array is that of 594 * the specified array. If the queue fits in the specified array, it 595 * is returned therein. Otherwise, a new array is allocated with the 596 * runtime type of the specified array and the size of this queue. 597 * 598 * <p>If this queue fits in the specified array with room to spare 599 * (i.e., the array has more elements than this queue), the element in 600 * the array immediately following the end of the queue is set to 601 * {@code null}. 602 * 603 * <p>Like the {@link #toArray()} method, this method acts as bridge between 604 * array-based and collection-based APIs. Further, this method allows 605 * precise control over the runtime type of the output array, and may, 606 * under certain circumstances, be used to save allocation costs. 607 * 608 * <p>Suppose {@code x} is a queue known to contain only strings. 609 * The following code can be used to dump the queue into a newly 610 * allocated array of {@code String}: 611 * 612 * <pre> 613 * String[] y = x.toArray(new String[0]);</pre> 614 * 615 * Note that {@code toArray(new Object[0])} is identical in function to 616 * {@code toArray()}. 617 * 618 * @param a the array into which the elements of the queue are to 619 * be stored, if it is big enough; otherwise, a new array of the 620 * same runtime type is allocated for this purpose 621 * @return an array containing all of the elements in this queue 622 * @throws ArrayStoreException if the runtime type of the specified array 623 * is not a supertype of the runtime type of every element in 624 * this queue 625 * @throws NullPointerException if the specified array is null 626 */ 627 @SuppressWarnings("unchecked") 628 public <T> T[] toArray(T[] a) { 629 // try to use sent-in array 630 int k = 0; 631 Node<E> p; 632 for (p = first(); p != null && k < a.length; p = succ(p)) { 633 E item = p.item; 634 if (item != null) 635 a[k++] = (T)item; 636 } 637 if (p == null) { 638 if (k < a.length) 639 a[k] = null; 640 return a; 641 } 642 643 // If won't fit, use ArrayList version 644 ArrayList<E> al = new ArrayList<E>(); 645 for (Node<E> q = first(); q != null; q = succ(q)) { 646 E item = q.item; 647 if (item != null) 648 al.add(item); 649 } 650 return al.toArray(a); 651 } 652 653 /** 654 * Returns an iterator over the elements in this queue in proper sequence. 655 * The elements will be returned in order from first (head) to last (tail). 656 * 657 * <p>The returned iterator is a "weakly consistent" iterator that 658 * will never throw {@link java.util.ConcurrentModificationException 659 * ConcurrentModificationException}, and guarantees to traverse 660 * elements as they existed upon construction of the iterator, and 661 * may (but is not guaranteed to) reflect any modifications 662 * subsequent to construction. 663 * 664 * @return an iterator over the elements in this queue in proper sequence 665 */ 666 public Iterator<E> iterator() { 667 return new Itr(); 668 } 669 670 private class Itr implements Iterator<E> { 671 /** 672 * Next node to return item for. 673 */ 674 private Node<E> nextNode; 675 676 /** 677 * nextItem holds on to item fields because once we claim 678 * that an element exists in hasNext(), we must return it in 679 * the following next() call even if it was in the process of 680 * being removed when hasNext() was called. 681 */ 682 private E nextItem; 683 684 /** 685 * Node of the last returned item, to support remove. 686 */ 687 private Node<E> lastRet; 688 689 Itr() { 690 advance(); 691 } 692 693 /** 694 * Moves to next valid node and returns item to return for 695 * next(), or null if no such. 696 */ 697 private E advance() { 698 lastRet = nextNode; 699 E x = nextItem; 700 701 Node<E> pred, p; 702 if (nextNode == null) { 703 p = first(); 704 pred = null; 705 } else { 706 pred = nextNode; 707 p = succ(nextNode); 708 } 709 710 for (;;) { 711 if (p == null) { 712 nextNode = null; 713 nextItem = null; 714 return x; 715 } 716 E item = p.item; 717 if (item != null) { 718 nextNode = p; 719 nextItem = item; 720 return x; 721 } else { 722 // skip over nulls 723 Node<E> next = succ(p); 724 if (pred != null && next != null) 725 pred.casNext(p, next); 726 p = next; 727 } 728 } 729 } 730 731 public boolean hasNext() { 732 return nextNode != null; 733 } 734 735 public E next() { 736 if (nextNode == null) throw new NoSuchElementException(); 737 return advance(); 738 } 739 740 public void remove() { 741 Node<E> l = lastRet; 742 if (l == null) throw new IllegalStateException(); 743 // rely on a future traversal to relink. 744 l.item = null; 745 lastRet = null; 746 } 747 } 748 749 /** 750 * Saves the state to a stream (that is, serializes it). 751 * 752 * @serialData All of the elements (each an {@code E}) in 753 * the proper order, followed by a null 754 * @param s the stream 755 */ 756 private void writeObject(java.io.ObjectOutputStream s) 757 throws java.io.IOException { 758 759 // Write out any hidden stuff 760 s.defaultWriteObject(); 761 762 // Write out all elements in the proper order. 763 for (Node<E> p = first(); p != null; p = succ(p)) { 764 Object item = p.item; 765 if (item != null) 766 s.writeObject(item); 767 } 768 769 // Use trailing null as sentinel 770 s.writeObject(null); 771 } 772 773 /** 774 * Reconstitutes the instance from a stream (that is, deserializes it). 775 * @param s the stream 776 */ 777 private void readObject(java.io.ObjectInputStream s) 778 throws java.io.IOException, ClassNotFoundException { 779 s.defaultReadObject(); 780 781 // Read in elements until trailing null sentinel found 782 Node<E> h = null, t = null; 783 Object item; 784 while ((item = s.readObject()) != null) { 785 @SuppressWarnings("unchecked") 786 Node<E> newNode = new Node<E>((E) item); 787 if (h == null) 788 h = t = newNode; 789 else { 790 t.lazySetNext(newNode); 791 t = newNode; 792 } 793 } 794 if (h == null) 795 h = t = new Node<E>(null); 796 head = h; 797 tail = t; 798 } 799 800 /** 801 * Throws NullPointerException if argument is null. 802 * 803 * @param v the element 804 */ 805 private static void checkNotNull(Object v) { 806 if (v == null) 807 throw new NullPointerException(); 808 } 809 810 private boolean casTail(Node<E> cmp, Node<E> val) { 811 return UNSAFE.compareAndSwapObject(this, tailOffset, cmp, val); 812 } 813 814 private boolean casHead(Node<E> cmp, Node<E> val) { 815 return UNSAFE.compareAndSwapObject(this, headOffset, cmp, val); 816 } 817 818 // Unsafe mechanics 819 820 private static final sun.misc.Unsafe UNSAFE; 821 private static final long headOffset; 822 private static final long tailOffset; 823 static { 824 try { 825 UNSAFE = sun.misc.Unsafe.getUnsafe(); 826 Class k = ConcurrentLinkedQueue.class; 827 headOffset = UNSAFE.objectFieldOffset 828 (k.getDeclaredField("head")); 829 tailOffset = UNSAFE.objectFieldOffset 830 (k.getDeclaredField("tail")); 831 } catch (Exception e) { 832 throw new Error(e); 833 } 834 } 835 }
下面从ConcurrentLinkedQueue的创建,添加,删除这几个方面对它进行分析。
1 创建
下面以ConcurrentLinkedQueue()来进行说明。
public ConcurrentLinkedQueue() { head = tail = new Node<E>(null); }
说明:在构造函数中,新建了一个“内容为null的节点”,并设置表头head和表尾tail的值为新节点。
head和tail的定义如下:
private transient volatile Node<E> head; private transient volatile Node<E> tail;
head和tail都是volatile类型,他们具有volatile赋予的含义:“即对一个volatile变量的读,总是能看到(任意线程)对这个volatile变量最后的写入”。
Node的声明如下:
private static class Node<E> { volatile E item; volatile Node<E> next; Node(E item) { UNSAFE.putObject(this, itemOffset, item); } boolean casItem(E cmp, E val) { return UNSAFE.compareAndSwapObject(this, itemOffset, cmp, val); } void lazySetNext(Node<E> val) { UNSAFE.putOrderedObject(this, nextOffset, val); } boolean casNext(Node<E> cmp, Node<E> val) { return UNSAFE.compareAndSwapObject(this, nextOffset, cmp, val); } // Unsafe mechanics private static final sun.misc.Unsafe UNSAFE; private static final long itemOffset; private static final long nextOffset; static { try { UNSAFE = sun.misc.Unsafe.getUnsafe(); Class k = Node.class; itemOffset = UNSAFE.objectFieldOffset (k.getDeclaredField("item")); nextOffset = UNSAFE.objectFieldOffset (k.getDeclaredField("next")); } catch (Exception e) { throw new Error(e); } } }
说明:
Node是个单向链表节点,next用于指向下一个Node,item用于存储数据。Node中操作节点数据的API,都是通过Unsafe机制的CAS函数实现的;例如casNext()是通过CAS函数“比较并设置节点的下一个节点”。
2. 添加
下面以add(E e)为例对ConcurrentLinkedQueue中的添加进行说明。
public boolean add(E e) { return offer(e); }
说明:add()实际上是调用的offer()来完成添加操作的。
offer()的源码如下:
public boolean offer(E e) { // 检查e是不是null,是的话抛出NullPointerException异常。 checkNotNull(e); // 创建新的节点 final Node<E> newNode = new Node<E>(e); // 将“新的节点”添加到链表的末尾。 for (Node<E> t = tail, p = t;;) { Node<E> q = p.next; // 情况1:q为空 if (q == null) { // CAS操作:如果“p的下一个节点为null”(即p为尾节点),则设置p的下一个节点为newNode。 // 如果该CAS操作成功的话,则比较“p和t”(若p不等于t,则设置newNode为新的尾节点),然后返回true。 // 如果该CAS操作失败,这意味着“其它线程对尾节点进行了修改”,则重新循环。 if (p.casNext(null, newNode)) { if (p != t) // hop two nodes at a time casTail(t, newNode); // Failure is OK. return true; } } // 情况2:p和q相等 else if (p == q) p = (t != (t = tail)) ? t : head; // 情况3:其它 else p = (p != t && t != (t = tail)) ? t : q; } }
说明:offer(E e)的作用就是将元素e添加到链表的末尾。offer()比较的地方是理解for循环,下面区分3种情况对for进行分析。
情况1 -- q为空。这意味着q是尾节点的下一个节点。此时,通过p.casNext(null, newNode)将“p的下一个节点设为newNode”,若设置成功的话,则比较“p和t”(若p不等于t,则设置newNode为新的尾节点),然后返回true。否则的话(意味着“其它线程对尾节点进行了修改”),什么也不做,继续进行for循环。
p.casNext(null, newNode),是调用CAS对p进行操作。若“p的下一个节点等于null”,则设置“p的下一个节点等于newNode”;设置成功的话,返回true,失败的话返回false。
情况2 -- p和q相等。这种情况什么时候会发生呢?通过“情况3”,我们知道,经过“情况3”的处理后,p的值可能等于q。
此时,若尾节点没有发生变化的话,那么,应该是头节点发生了变化,则设置p为头节点,然后重新遍历链表;否则(尾节点变化的话),则设置p为尾节点。
情况3 -- 其它。
我们将p = (p != t && t != (t = tail)) ? t : q;转换成如下代码。
if (p==t) { p = q; } else { Node<E> tmp=t; t = tail; if (tmp==t) { p=q; } else { p=t; } }
如果p和t相等,则设置p为q。否则的话,判断“尾节点是否发生变化”,没有变化的话,则设置p为q;否则,设置p为尾节点。
checkNotNull()的源码如下:
private static void checkNotNull(Object v) { if (v == null) throw new NullPointerException(); }
3. 删除
下面以poll()为例对ConcurrentLinkedQueue中的删除进行说明。
public E poll() { // 设置“标记” restartFromHead: for (;;) { for (Node<E> h = head, p = h, q;;) { E item = p.item; // 情况1 // 表头的数据不为null,并且“设置表头的数据为null”这个操作成功的话; // 则比较“p和h”(若p!=h,即表头发生了变化,则更新表头,即设置表头为p),然后返回原表头的item值。 if (item != null && p.casItem(item, null)) { if (p != h) // hop two nodes at a time updateHead(h, ((q = p.next) != null) ? q : p); return item; } // 情况2 // 表头的下一个节点为null,即链表只有一个“内容为null的表头节点”。则更新表头为p,并返回null。 else if ((q = p.next) == null) { updateHead(h, p); return null; } // 情况3 // 这可能到由于“情况4”的发生导致p=q,在该情况下跳转到restartFromHead标记重新操作。 else if (p == q) continue restartFromHead; // 情况4 // 设置p为q else p = q; } } }
说明:poll()的作用就是删除链表的表头节点,并返回被删节点对应的值。poll()的实现原理和offer()比较类似,下面根将or循环划分为4种情况进行分析。
情况1:“表头节点的数据”不为null,并且“设置表头节点的数据为null”这个操作成功。
p.casItem(item, null) -- 调用CAS函数,比较“节点p的数据值”与item是否相等,是的话,设置节点p的数据值为null。
在情况1发生时,先比较“p和h”,若p!=h,即表头发生了变化,则调用updateHead()更新表头;然后返回删除节点的item值。
updateHead()的源码如下:
final void updateHead(Node<E> h, Node<E> p) { if (h != p && casHead(h, p)) h.lazySetNext(h); }
说明:updateHead()的最终目的是更新表头为p,并设置h的下一个节点为h本身。
casHead(h,p)是通过CAS函数设置表头,若表头等于h的话,则设置表头为p。
lazySetNext()的源码如下:
void lazySetNext(Node<E> val) { UNSAFE.putOrderedObject(this, nextOffset, val); }
putOrderedObject()函数,我们在前面一章“TODO”中介绍过。h.lazySetNext(h)的作用是通过CAS函数设置h的下一个节点为h自身,该设置可能会延迟执行。
情况2:如果表头的下一个节点为null,即链表只有一个“内容为null的表头节点”。
则调用updateHead(h, p),将表头更新p;然后返回null。
情况3:p=q
在“情况4”的发生后,会导致p=q;此时,“情况3”就会发生。当“情况3”发生后,它会跳转到restartFromHead标记重新操作。
情况4:其它情况。
设置p=q。
1 import java.util.*; 2 import java.util.concurrent.*; 3 4 /* 5 * ConcurrentLinkedQueue是“线程安全”的队列,而LinkedList是非线程安全的。 6 * 7 * 下面是“多个线程同时操作并且遍历queue”的示例 8 * (01) 当queue是ConcurrentLinkedQueue对象时,程序能正常运行。 9 * (02) 当queue是LinkedList对象时,程序会产生ConcurrentModificationException异常。 10 * 11 * @author skywang 12 */ 13 public class ConcurrentLinkedQueueDemo1 { 14 15 // TODO: queue是LinkedList对象时,程序会出错。 16 //private static Queue<String> queue = new LinkedList<String>(); 17 private static Queue<String> queue = new ConcurrentLinkedQueue<String>(); 18 public static void main(String[] args) { 19 20 // 同时启动两个线程对queue进行操作! 21 new MyThread("ta").start(); 22 new MyThread("tb").start(); 23 } 24 25 private static void printAll() { 26 String value; 27 Iterator iter = queue.iterator(); 28 while(iter.hasNext()) { 29 value = (String)iter.next(); 30 System.out.print(value+", "); 31 } 32 System.out.println(); 33 } 34 35 private static class MyThread extends Thread { 36 MyThread(String name) { 37 super(name); 38 } 39 @Override 40 public void run() { 41 int i = 0; 42 while (i++ < 6) { 43 // “线程名” + "-" + "序号" 44 String val = Thread.currentThread().getName()+i; 45 queue.add(val); 46 // 通过“Iterator”遍历queue。 47 printAll(); 48 } 49 } 50 } 51 }
(某一次)运行结果:
ta1, ta1, tb1, tb1,
ta1, ta1, tb1, tb1, ta2, ta2, tb2,
tb2,
ta1, ta1, tb1, tb1, ta2, ta2, tb2, tb2, ta3, tb3,
ta3, ta1, tb3, tb1, ta4,
ta2, ta1, tb2, tb1, ta3, ta2, tb3, tb2, ta4, ta3, tb4,
tb3, ta1, ta4, tb1, tb4, ta2, ta5,
tb2, ta1, ta3, tb1, tb3, ta2, ta4, tb2, tb4, ta3, ta5, tb3, tb5,
ta4, ta1, tb4, tb1, ta5, ta2, tb5, tb2, ta6,
ta3, ta1, tb3, tb1, ta4, ta2, tb4, tb2, ta5, ta3, tb5, tb3, ta6, ta4, tb6,
tb4, ta5, tb5, ta6, tb6,
结果说明:如果将源码中的queue改成LinkedList对象时,程序会产生ConcurrentModificationException异常。
更多内容