mnist deep convolutional cetwork源码说明

主要对mnist_deep代码中的conv2d,max_pool,dropout进行说明

代码来源:https://github.com/tensorflow/tensorflow/blob/master/tensorflow/examples/tutorials/mnist/mnist_deep.py

说明参考:http://www.cnblogs.com/hellocwh/p/5564568.html

http://blog.csdn.net/mao_xiao_feng/article/details/53444333

http://blog.csdn.net/mao_xiao_feng/article/details/53453926

http://blog.csdn.net/lujiandong1/article/details/53223630

http://www.cnblogs.com/wuzhitj/p/6297992.html


# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

"""A deep MNIST classifier using convolutional layers.
See extensive documentation at
https://www.tensorflow.org/get_started/mnist/pros
"""
# Disable linter warnings to maintain consistency with tutorial.
# pylint: disable=invalid-name
# pylint: disable=g-bad-import-order

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import argparse
import sys

from tensorflow.examples.tutorials.mnist import input_data

import tensorflow as tf

FLAGS = None


def deepnn(x):
  """deepnn builds the graph for a deep net for classifying digits.
  Args:
    x: an input tensor with the dimensions (N_examples, 784), where 784 is the
    number of pixels in a standard MNIST image.
  Returns:
    A tuple (y, keep_prob). y is a tensor of shape (N_examples, 10), with values
    equal to the logits of classifying the digit into one of 10 classes (the
    digits 0-9). keep_prob is a scalar placeholder for the probability of
    dropout.
  """
  # Reshape to use within a convolutional neural net.
  # Last dimension is for "features" - there is only one here, since images are
  # grayscale -- it would be 3 for an RGB image, 4 for RGBA, etc.
  x_image = tf.reshape(x, [-1, 28, 28, 1])

  # First convolutional layer - maps one grayscale image to 32 feature maps.
  W_conv1 = weight_variable([5, 5, 1, 32])
  b_conv1 = bias_variable([32])
  h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)

  # Pooling layer - downsamples by 2X.
  h_pool1 = max_pool_2x2(h_conv1)

  # Second convolutional layer -- maps 32 feature maps to 64.
  W_conv2 = weight_variable([5, 5, 32, 64])
  b_conv2 = bias_variable([64])
  h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)

  # Second pooling layer.
  h_pool2 = max_pool_2x2(h_conv2)

  # Fully connected layer 1 -- after 2 round of downsampling, our 28x28 image
  # is down to 7x7x64 feature maps -- maps this to 1024 features.
  W_fc1 = weight_variable([7 * 7 * 64, 1024])
  b_fc1 = bias_variable([1024])

  h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
  h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)

  # Dropout - controls the complexity of the model, prevents co-adaptation of features.
  # dropout一般用在全连接层后面,其作用就是在每批数据输入时,让神经网络中的每个神经元以1-keep_prob的概率不工作,以此来防止过拟合.  
  keep_prob = tf.placeholder(tf.float32)
  h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)

  # Map the 1024 features to 10 classes, one for each digit
  W_fc2 = weight_variable([1024, 10])
  b_fc2 = bias_variable([10])

  y_conv = tf.matmul(h_fc1_drop, W_fc2) + b_fc2
  return y_conv, keep_prob


def conv2d(x, W):
  """conv2d returns a 2d convolution layer with full stride.
     input x: [batch, in_height, in_width, in_channels]
     filter W: [filter_height, filter_width, in_channels, out_channels]
     strides: [batch, in_height, in_width, in_channels], corresponding to the input x
     return: output[b, i, j, k] = sum_{di, dj, q} input[b, strides[1] * i + di, strides[2] * j + dj, q] * filter[di, dj, q, k]
     that is, the shape of output is the same as input, [batch, in_height, in_width, in_channels]. In fact, strides[1] and strides[2] is working
     usually, strides[0] = strides[3] = 1, and filter[2] = x[3]
  """
  return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')


def max_pool_2x2(x):
  """max_pool_2x2 downsamples a feature map by 2X.
     input x: [batch, in_height, in_width, in_channels]
     ksize: usually [1, height, width, 1]
     strides: strides[1] and strides[2] is working, strides[0] = strides[3] = 1
  """
  return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],
                        strides=[1, 2, 2, 1], padding='SAME')


def weight_variable(shape):
  """weight_variable generates a weight variable of a given shape."""
  initial = tf.truncated_normal(shape, stddev=0.1)
  return tf.Variable(initial)


def bias_variable(shape):
  """bias_variable generates a bias variable of a given shape."""
  initial = tf.constant(0.1, shape=shape)
  return tf.Variable(initial)


def main(_):
  # Import data
  mnist = input_data.read_data_sets(FLAGS.data_dir, one_hot=True)

  # Create the model
  x = tf.placeholder(tf.float32, [None, 784])

  # Define loss and optimizer
  y_ = tf.placeholder(tf.float32, [None, 10])

  # Build the graph for the deep net
  y_conv, keep_prob = deepnn(x)

  cross_entropy = tf.reduce_mean(
      tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y_conv))
  train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
  correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))
  accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

  with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    for i in range(20000):
      batch = mnist.train.next_batch(50)
      if i % 100 == 0:
      
        #here keep_prob=1.0, that is, dropout is not working
        train_accuracy = accuracy.eval(feed_dict={
            x: batch[0], y_: batch[1], keep_prob: 1.0})
        print('step %d, training accuracy %g' % (i, train_accuracy))
        
      #here keep_prob=0.5, that is, dropout is working during training
      train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})

    #here keep_prob=1.0, dropout is not working during testing
    print('test accuracy %g' % accuracy.eval(feed_dict={
        x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))

if __name__ == '__main__':
  parser = argparse.ArgumentParser()
  parser.add_argument('--data_dir', type=str,
                      default='/tmp/tensorflow/mnist/input_data',
                      help='Directory for storing input data')
  FLAGS, unparsed = parser.parse_known_args()
  tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)


 
  
 
  
 
  
 
  
 
  
 
  
 
  
 
  
 
  
 
 

你可能感兴趣的:(mnist deep convolutional cetwork源码说明)