苏苏酱陪你学动态规划(二)——合唱团

1、问题重述

     有 n 个学生站成一排,每个学生有一个能力值,牛牛想从这 n 个学生中按照顺序选取 k 名学生,要求相邻两个学生的位置编号的差不超过 d,使得这 k 个学生的能力值的乘积最大,你能返回最大的乘积吗?

2、题目分析  

     题目要求n各学生中选择k个,使这k个学生的能力值乘积最大。这是一个最优化的问题。另外,在优化过程中,提出了相邻两个学生的位置编号差不超过d的约束。

如果不用递归或者动态规划,问题很难入手,并且,限制条件d也需要对每一个进行约束,编程十分复杂

     所以,解决的方法是采用动态规划(理由:1.求解的是最优化问题;2.可以分解为最优子结构)

     首先,对该问题的分解是关键。

从n个学生中,选择k个,可以看成是:先从n个学生里选择最后1个,然后在剩下的里选择k-1个,并且让这1个和前k-1个满足约束条件

     其次,数学描述

为了能够编程实现,需要归纳出其递推公式,而在写递推公式之前,首先又需要对其进行数学描述

      记第k个人的位置为one,则可以用f[one][k]表示从n个人中选择k个的方案。然后,它的子问题,需要从one前面的left个人里面,选择k-1个,这里left表示k-1个人中最后一个(即第k-1个)人的位置,因此,子问题可以表示成f[left][k-1].

学生能力数组记为arr[n+1],第i个学生的能力值为arr[i]
one表示最后一个人,其取值范围为[1,n];
left表示第k-1个人所处的位置,需要和第k个人的位置差不超过d,因此
max{k-1,one-d}<=left<=one-1

      在n和k定了之后,需要求解出n个学生选择k个能力值乘积的最大值。因为能力值有正有负,所以

当one对应的学生能力值为正时,
f[one][k] = max{f[left][k-1]arr[i]}(max{k-1,one-d}<=left<=one-1);
当one对应的学生能力值为负时
g[one][k] = min{g[left][k-1]
arr[i]}(max{k-1,one-d}<=left<=one-1);
此处g[][]是存储n个选k个能力值乘积的最小值数组

3、编程实现

import java.util.Scanner;

public class Main {
    public static void main(String[] args){
        Scanner sc = new Scanner(System.in);
        while(sc.hasNext()) {
            //总人数
            int n = sc.nextInt();
            //学生能力值数组,第i个人直接对应arr[i]
            int[] arr = new int[n + 1];
            //初始化
            for (int i = 1; i <= n; i++) {//人直接对应坐标
                arr[i] = sc.nextInt();
            }
            //选择的学生数
            int kk = sc.nextInt();
            //间距
            int dd = sc.nextInt();

            /**
             * 递推的时候,以f[one][k]的形式表示
             * 其中:one表示最后一个人的位置,k为包括这个人,一共有k个人
             * 原问题和子问题的关系:f[one][k]=max{f[left][k-1]*arr[one],g[left][k-1]*arr[one]}
             */
            //规划数组
            long[][] f = new long[n + 1][kk + 1];//人直接对应坐标,n和kk都要+1
            long[][] g = new long[n + 1][kk + 1];
            //初始化k=1的情况
            for(int one = 1;one<=n;one++){
                f[one][1] = arr[one];
                g[one][1] = arr[one];
            }
            //自底向上递推
            for(int k=2;k<=kk;k++){
                for(int one = k;one<=n;one++){
                    //求解当one和k定的时候,最大的分割点
                    long tempmax = Long.MIN_VALUE;
                    long tempmin = Long.MAX_VALUE;
                    for(int left = Math.max(k-1,one-dd);left<=one-1;left++){
                        if(tempmaxMath.min(f[left][k-1]*arr[one],g[left][k-1]*arr[one])){
                            tempmin=Math.min(f[left][k-1]*arr[one],g[left][k-1]*arr[one]);
                        }
                    }
                    f[one][k] = tempmax;
                    g[one][k] = tempmin;
                }
            }
            //n选k最大的需要从最后一个最大的位置选
            long result = Long.MIN_VALUE;
            for(int one = kk;one<=n;one++){
                if(result

 本篇博文整理自牛客网菜鸟华的分享。

你可能感兴趣的:(算法)