OpenCV图像识别:车牌定位算法源码,Python语言实现

#-*-coding: utf-8-*-  

import cv2
import numpy as np
import math

def stretch(img):
    max = float(img.max())
    min = float(img.min())
 
    for i in range(img.shape[0]):
        for j in range(img.shape[1]):
            img[i, j] = (255/(max-min))*img[i,j]-(255*min)/(max-min)
             
    return img
     
def dobinaryzation(img):
    max = float(img.max())
    min = float(img.min())
     
    x = max - ((max-min) / 2)
    ret, threshedimg = cv2.threshold(img, x, 255, cv2.THRESH_BINARY)
     
    return threshedimg

def find_retangle(contour):
	y, x = [], []
	
	for p in contour:
		y.append(p[0][0])
		x.append(p[0][1])
		
	return [min(y), min(x), max(y), max(x)]

def locate_license(img, orgimg):
	img, contours, hierarchy = cv2.findContours(img, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

	# 找出最大的三个区域
	blocks = []
	for c in contours:
		# 找出轮廓的左上点和右下点,由此计算它的面积和长宽比
		r = find_retangle(c)
		a = (r[2]-r[0]) * (r[3]-r[1])
		s = (r[2]-r[0]) / (r[3]-r[1])
		
		blocks.append([r, a, s])
		
	# 选出面积最大的3个区域
	blocks = sorted(blocks, key=lambda b: b[2])[-3:]
	
	# 使用颜色识别判断找出最像车牌的区域
	maxweight, maxinedx = 0, -1
	for i in xrange(len(blocks)):
		b = orgimg[blocks[i][0][1]:blocks[i][0][3], blocks[i][0][0]:blocks[i][0][2]]
		# RGB转HSV
		hsv = cv2.cvtColor(b, cv2.COLOR_BGR2HSV)
		# 蓝色车牌范围
		lower = np.array([100,50,50])
		upper = np.array([140,255,255])
		# 根据阈值构建掩模
		mask = cv2.inRange(hsv, lower, upper)

		# 统计权值
		w1 = 0
		for m in mask:
			w1 += m / 255
		
		w2 = 0
		for w in w1:
			w2 += w
			
		# 选出最大权值的区域
		if w2 > maxweight:
			maxindex = i
			maxweight = w2
		
	return blocks[maxindex][0]
	
def find_license(img):
	'''预处理'''
	# 压缩图像
	img = cv2.resize(img, (400, 400*img.shape[0]/img.shape[1]))
	 
	# RGB转灰色
	grayimg = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
	 
	# 灰度拉伸
	stretchedimg = stretch(grayimg)
	 
	# 进行开运算,用来去噪声
	r = 16
	h = w = r * 2 + 1
	kernel = np.zeros((h, w), dtype=np.uint8)
	cv2.circle(kernel, (r, r), r, 1, -1)
	 
	openingimg = cv2.morphologyEx(stretchedimg, cv2.MORPH_OPEN, kernel)
	strtimg = cv2.absdiff(stretchedimg,openingimg)
	 
	# 图像二值化
	binaryimg = dobinaryzation(strtimg)
	 
	# 使用Canny函数做边缘检测
	cannyimg = cv2.Canny(binaryimg, binaryimg.shape[0], binaryimg.shape[1])
	 
	''' 消除小区域,保留大块区域,从而定位车牌'''
	# 进行闭运算
	kernel = np.ones((5,19), np.uint8)
	closingimg = cv2.morphologyEx(cannyimg, cv2.MORPH_CLOSE, kernel)
	 
	# 进行开运算
	openingimg = cv2.morphologyEx(closingimg, cv2.MORPH_OPEN, kernel)
	 
	# 再次进行开运算
	kernel = np.ones((11,5), np.uint8)
	openingimg = cv2.morphologyEx(openingimg, cv2.MORPH_OPEN, kernel)

	# 消除小区域,定位车牌位置
	rect = locate_license(openingimg, img)
	
	return rect, img
	
if __name__ == '__main__':
	# 读取图片
	orgimg = cv2.imread('car.jpg')
	rect, img = find_license(orgimg)

	# 框出车牌
	cv2.rectangle(img, (rect[0], rect[1]), (rect[2], rect[3]), (0,255,0),2)
	cv2.imshow('img', img)

	cv2.waitKey(0)
	cv2.destroyAllWindows()


定位前:

OpenCV图像识别:车牌定位算法源码,Python语言实现_第1张图片

OpenCV图像识别:车牌定位算法源码,Python语言实现_第2张图片

OpenCV图像识别:车牌定位算法源码,Python语言实现_第3张图片

定位后:

OpenCV图像识别:车牌定位算法源码,Python语言实现_第4张图片

OpenCV图像识别:车牌定位算法源码,Python语言实现_第5张图片

OpenCV图像识别:车牌定位算法源码,Python语言实现_第6张图片

你可能感兴趣的:(python,opencv)