python基于dlib的face landmarks

python基于dlib的face landmarks

python使用dlib进行人脸检测与人脸关键点标记

Dlib简介:

首先给大家介绍一下Dlib

这里写图片描述

Dlib是一个跨平台的C++公共库,除了线程支持,网络支持,提供测试以及大量工具等等优点,Dlib还是一个强大的机器学习的C++库,包含了许多机器学习常用的算法。同时支持大量的数值算法如矩阵、大整数、随机数运算等等。

Dlib同时还包含了大量的图形模型算法。

最重要的是Dlib的文档和例子都非常详细。

Dlib主页:

http://dlib.net/

这篇博客所述的人脸标记的算法也是来自Dlib库,Dlib实现了One Millisecond Face Alignment with an Ensemble of Regression Trees中的算法(http://www.csc.kth.se/~vahidk/papers/KazemiCVPR14.pdf,作者为Vahid Kazemi 和Josephine Sullivan)

这篇论文非常出名,在谷歌上打上One Millisecond就会自动补全,是CVPR 2014(国际计算机视觉与模式识别会议)上的一篇国际顶级水平的论文。毫秒级别就可以实现相当准确的人脸标记,包括一些半侧脸,脸很不清楚的情况,论文本身的算法十分复杂,感兴趣的同学可以下载看看。

Dlib实现了这篇最新论文的算法,所以Dlib的人脸标记算法是十分先进的,而且Dlib自带的人脸检测库也很准确,我们项目受到硬件所限,摄像头拍摄到的画面比较模糊,而在这种情况下之前尝试了几个人脸库,识别率都非常的低,而Dlib的效果简直出乎意料。

相对于C++我还是比较喜欢使用python,同时Dlib也是支持python的,只是在配置的时候碰了不少钉子,网上大部分的Dlib资料都是针对于C++的,我好不容易才配置好了python的dlib,这里分享给大家:

Dlib for python 配置:

因为是用python去开发计算机视觉方面的东西,python的这些科学计算库是必不可少的,这里我把常用的科学计算库的安装也涵盖在内了,已经安装过这些库的同学就可以忽略了。

我的环境是Ubuntu14.04:

大家都知道Ubuntu是自带python2.7的,而且很多Ubuntu系统软件都是基于python2.7的,有一次我系统的python版本乱了,我脑残的想把python2.7卸载了重装,然后……好像是提醒我要卸载几千个软件来着,没看好直接回车了,等我反应过来Ctrl + C 的时候系统已经没了一半了…

所以我发现想要搞崩系统,这句话比rm -rf 还给力…

sudo apt-get remove python2.7

首先安装两个python第三方库的下载安装工具,ubuntu14.04好像是预装了easy_install

以下过程都是在终端中进行:

1.安装pip

sudo apt-get install python-pip

2.安装easy-install

sudo apt-get install python-setuptools

3.测试一下easy_install

有时候系统环境复杂了,安装的时候会安装到别的python版本上,这就麻烦了,所以还是谨慎一点测试一下,这里安装一个我之前在博客中提到的可以模拟浏览器的第三方python库测试一下。

sudo easy_install Mechanize

4.测试安装是否成功

在终端输入python进入python shell

python

进入python shell后import一下刚安装的mechanize

>>>import mechanize

没有报错,就是安装成功了,如果说没有找到,那可能就是安装到别的python版本的路径了。

同时也测试一下PIL这个基础库

>>>import PIL

没有报错的话,说明PIL已经被预装过了

5.安装numpy

接下来安装numpy

首先需要安装python-dev才可以编译之后的扩展库

sudo apt-get install python-dev

之后就可以用easy-install 安装numpy了

sudo easy_install numpy

这里有时候用easy-install 安装numpy下载的时候会卡住,那就只能用 apt-get 来安装了:

sudo apt-get install numpy

不推荐这样安装的原因就是系统环境或者说python版本多了之后,直接apt-get安装numpy很有可能不知道装到哪个版本去了,然后就很麻烦了,我有好几次遇到这个问题,不知道是运气问题还是什么,所以风险还是很大的,所以还是尽量用easy-install来安装。

同样import numpy 进行测试

python


>>>import numpy

没有报错的话就是成功了

下面的安装过程同理,我就从简写了,大家自己每步别忘了测试一下

6.安装scipy

sudo apt-get install python-scipy

7.安装matplotlib

sudo apt-get install python-matplotlib

8.安装dlib

我当时安装dlib的过程简直太艰辛,网上各种说不知道怎么配,配不好,我基本把stackoverflow上的方法试了个遍,才最终成功编译出来并且导入,不过听说18.18更新之后有了setup.py,那真是极好的,18.18我没有亲自配过也不能乱说,这里给大家分享我配置18.17的过程吧:

1.首先必须安装libboost,不然是不能使用.so库的

sudo apt-get install libboost-python-dev cmake

2.到Dlib的官网上下载dlib,会下载下来一个压缩包,里面有C++版的dlib库以及例子文档,Python dlib库的代码例子等等

python基于dlib的face landmarks_第1张图片

我使用的版本是dlib-18.17,大家也可以在我这里下载:

http://download.csdn.net/detail/sunmc1204953974/9289913

之后进入python_examples下使用bat文件进行编译,编译需要先安装libboost-python-dev和cmake

cd to dlib-18.17/python_examples

./compile_dlib_python_module.bat 

之后会得到一个dlib.so,复制到dist-packages目录下即可使用

这里大家也可以直接用我编译好的.so库,但是也必须安装libboost才可以,不然python是不能调用so库的,下载地址:

http://download.csdn.net/detail/sunmc1204953974/9288259

将.so复制到dist-packages目录下

sudo cp dlib.so /usr/local/lib/python2.7/dist-packages/

最新的dlib18.18好像就没有这个bat文件了,取而代之的是一个setup文件,那么安装起来应该就没有这么麻烦了,大家可以去直接安装18.18,也可以直接下载复制我的.so库,这两种方法应该都不麻烦~

有时候还会需要下面这两个库,建议大家一并安装一下

9.安装skimage

sudo apt-get install python-skimage

10.安装imtools

sudo easy_install imtools

Dlib face landmarks Demo

环境配置结束之后,我们首先看一下dlib提供的示例程序

1.人脸检测

dlib-18.17/python_examples/face_detector.py 源程序:


#!/usr/bin/python
# The contents of this file are in the public domain. See LICENSE_FOR_EXAMPLE_PROGRAMS.txt
#
#   This example program shows how to find frontal human faces in an image.  In
#   particular, it shows how you can take a list of images from the command
#   line and display each on the screen with red boxes overlaid on each human
#   face.
#
#   The examples/faces folder contains some jpg images of people.  You can run
#   this program on them and see the detections by executing the
#   following command:
#       ./face_detector.py ../examples/faces/*.jpg
#
#   This face detector is made using the now classic Histogram of Oriented
#   Gradients (HOG) feature combined with a linear classifier, an image
#   pyramid, and sliding window detection scheme.  This type of object detector
#   is fairly general and capable of detecting many types of semi-rigid objects
#   in addition to human faces.  Therefore, if you are interested in making
#   your own object detectors then read the train_object_detector.py example
#   program.  
#
#
# COMPILING THE DLIB PYTHON INTERFACE
#   Dlib comes with a compiled python interface for python 2.7 on MS Windows. If
#   you are using another python version or operating system then you need to
#   compile the dlib python interface before you can use this file.  To do this,
#   run compile_dlib_python_module.bat.  This should work on any operating
#   system so long as you have CMake and boost-python installed.
#   On Ubuntu, this can be done easily by running the command:
#       sudo apt-get install libboost-python-dev cmake
#
#   Also note that this example requires scikit-image which can be installed
#   via the command:
#       pip install -U scikit-image
#   Or downloaded from http://scikit-image.org/download.html. 

import sys

import dlib

from skimage import io

detector = dlib.get_frontal_face_detector()

win = dlib.image_window()

print("a");

for f in sys.argv[1:]:

    print("a");

    print("Processing file: {}".format(f))
    img = io.imread(f)
    # The 1 in the second argument indicates that we should upsample the image
    # 1 time.  This will make everything bigger and allow us to detect more
    # faces.
    dets = detector(img, 1)
    print("Number of faces detected: {}".format(len(dets)))
    for i, d in enumerate(dets):
        print("Detection {}: Left: {} Top: {} Right: {} Bottom: {}".format(
            i, d.left(), d.top(), d.right(), d.bottom()))

    win.clear_overlay()
    win.set_image(img)
    win.add_overlay(dets)
    dlib.hit_enter_to_continue()


# Finally, if you really want to you can ask the detector to tell you the score
# for each detection.  The score is bigger for more confident detections.
# Also, the idx tells you which of the face sub-detectors matched.  This can be
# used to broadly identify faces in different orientations.

if (len(sys.argv[1:]) > 0):
    img = io.imread(sys.argv[1])
    dets, scores, idx = detector.run(img, 1)
    for i, d in enumerate(dets):
        print("Detection {}, score: {}, face_type:{}".format(
            d, scores[i], idx[i]))

我把源代码精简了一下,加了一下注释: face_detector0.1.py

# -*- coding: utf-8 -*-

import sys

import dlib

from skimage import io


#使用dlib自带的frontal_face_detector作为我们的特征提取器
detector = dlib.get_frontal_face_detector()

#使用dlib提供的图片窗口
win = dlib.image_window()

#sys.argv[]是用来获取命令行参数的,sys.argv[0]表示代码本身文件路径,所以参数从1开始向后依次获取图片路径
for f in sys.argv[1:]:

    #输出目前处理的图片地址
    print("Processing file: {}".format(f))

    #使用skimage的io读取图片
    img = io.imread(f)

    #使用detector进行人脸检测 dets为返回的结果
    dets = detector(img, 1)

    #dets的元素个数即为脸的个数
    print("Number of faces detected: {}".format(len(dets)))

    #使用enumerate 函数遍历序列中的元素以及它们的下标
    #下标i即为人脸序号
    #left:人脸左边距离图片左边界的距离 ;right:人脸右边距离图片左边界的距离 
    #top:人脸上边距离图片上边界的距离 ;bottom:人脸下边距离图片上边界的距离
    for i, d in enumerate(dets):
        print("dets{}".format(d))
        print("Detection {}: Left: {} Top: {} Right: {} Bottom: {}"
            .format( i, d.left(), d.top(), d.right(), d.bottom()))

    #也可以获取比较全面的信息,如获取人脸与detector的匹配程度
    dets, scores, idx = detector.run(img, 1)
    for i, d in enumerate(dets):
        print("Detection {}, dets{},score: {}, face_type:{}".format( i, d, scores[i], idx[i]))    

    #绘制图片(dlib的ui库可以直接绘制dets)
    win.set_image(img)
    win.add_overlay(dets)

    #等待点击
    dlib.hit_enter_to_continue()

分别测试了一个人脸的和多个人脸的,以下是运行结果:

运行的时候把图片文件路径加到后面就好了

python face_detector0.1.py ./data/3.jpg

一张脸的:

python基于dlib的face landmarks_第2张图片

两张脸的:

python基于dlib的face landmarks_第3张图片

这里可以看出侧脸与detector的匹配度要比正脸小的很多

2.人脸关键点提取

人脸检测我们使用了dlib自带的人脸检测器(detector),关键点提取需要一个特征提取器(predictor),为了构建特征提取器,预训练模型必不可少。

除了自行进行训练外,还可以使用官方提供的一个模型。该模型可从dlib sourceforge库下载:

http://sourceforge.net/projects/dclib/files/dlib/v18.10/shape_predictor_68_face_landmarks.dat.bz2

也可以从我的连接下载:

http://download.csdn.net/detail/sunmc1204953974/9289949

这个库支持68个关键点的提取,一般来说也够用了,如果需要更多的特征点就要自己去训练了。

dlib-18.17/python_examples/face_landmark_detection.py 源程序:

#!/usr/bin/python
# The contents of this file are in the public domain. See LICENSE_FOR_EXAMPLE_PROGRAMS.txt
#
#   This example program shows how to find frontal human faces in an image and
#   estimate their pose.  The pose takes the form of 68 landmarks.  These are
#   points on the face such as the corners of the mouth, along the eyebrows, on
#   the eyes, and so forth.
#
#   This face detector is made using the classic Histogram of Oriented
#   Gradients (HOG) feature combined with a linear classifier, an image pyramid,
#   and sliding window detection scheme.  The pose estimator was created by
#   using dlib's implementation of the paper:
#      One Millisecond Face Alignment with an Ensemble of Regression Trees by
#      Vahid Kazemi and Josephine Sullivan, CVPR 2014
#   and was trained on the iBUG 300-W face landmark dataset.
#
#   Also, note that you can train your own models using dlib's machine learning
#   tools. See train_shape_predictor.py to see an example.
#
#   You can get the shape_predictor_68_face_landmarks.dat file from:
#   http://sourceforge.net/projects/dclib/files/dlib/v18.10/shape_predictor_68_face_landmarks.dat.bz2
#
# COMPILING THE DLIB PYTHON INTERFACE
#   Dlib comes with a compiled python interface for python 2.7 on MS Windows. If
#   you are using another python version or operating system then you need to
#   compile the dlib python interface before you can use this file.  To do this,
#   run compile_dlib_python_module.bat.  This should work on any operating
#   system so long as you have CMake and boost-python installed.
#   On Ubuntu, this can be done easily by running the command:
#       sudo apt-get install libboost-python-dev cmake
#
#   Also note that this example requires scikit-image which can be installed
#   via the command:
#       pip install -U scikit-image
#   Or downloaded from http://scikit-image.org/download.html. 

import sys
import os
import dlib
import glob
from skimage import io

if len(sys.argv) != 3:
    print(
        "Give the path to the trained shape predictor model as the first "
        "argument and then the directory containing the facial images.\n"
        "For example, if you are in the python_examples folder then "
        "execute this program by running:\n"
        "    ./face_landmark_detection.py shape_predictor_68_face_landmarks.dat ../examples/faces\n"
        "You can download a trained facial shape predictor from:\n"
        "    http://sourceforge.net/projects/dclib/files/dlib/v18.10/shape_predictor_68_face_landmarks.dat.bz2")
    exit()

predictor_path = sys.argv[1]
faces_folder_path = sys.argv[2]

detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor(predictor_path)
win = dlib.image_window()

for f in glob.glob(os.path.join(faces_folder_path, "*.jpg")):
    print("Processing file: {}".format(f))
    img = io.imread(f)

    win.clear_overlay()
    win.set_image(img)

    # Ask the detector to find the bounding boxes of each face. The 1 in the
    # second argument indicates that we should upsample the image 1 time. This
    # will make everything bigger and allow us to detect more faces.
    dets = detector(img, 1)
    print("Number of faces detected: {}".format(len(dets)))
    for k, d in enumerate(dets):
        print("Detection {}: Left: {} Top: {} Right: {} Bottom: {}".format(
            k, d.left(), d.top(), d.right(), d.bottom()))
        # Get the landmarks/parts for the face in box d.
        shape = predictor(img, d)
        print("Part 0: {}, Part 1: {} ...".format(shape.part(0),
                                                  shape.part(1)))
        # Draw the face landmarks on the screen.
        win.add_overlay(shape)

    win.add_overlay(dets)
    dlib.hit_enter_to_continue()

精简注释版: face_landmark_detection0.1.py

# -*- coding: utf-8 -*-

import dlib

import numpy

from skimage import io

#源程序是用sys.argv从命令行参数去获取训练模型,精简版我直接把路径写在程序中了
predictor_path = "./data/shape_predictor_68_face_landmarks.dat"

#源程序是用sys.argv从命令行参数去获取文件夹路径,再处理文件夹里的所有图片
#这里我直接把图片路径写在程序里了,每运行一次就只提取一张图片的关键点
faces_path = "./data/3.jpg"

#与人脸检测相同,使用dlib自带的frontal_face_detector作为人脸检测器
detector = dlib.get_frontal_face_detector()

#使用官方提供的模型构建特征提取器
predictor = dlib.shape_predictor(predictor_path)

#使用dlib提供的图片窗口
win = dlib.image_window()

#使用skimage的io读取图片
img = io.imread(faces_path)

#绘制图片
win.clear_overlay()
win.set_image(img)

 #与人脸检测程序相同,使用detector进行人脸检测 dets为返回的结果
dets = detector(img, 1)

#dets的元素个数即为脸的个数
print("Number of faces detected: {}".format(len(dets)))

#使用enumerate 函数遍历序列中的元素以及它们的下标
#下标k即为人脸序号
#left:人脸左边距离图片左边界的距离 ;right:人脸右边距离图片左边界的距离 
#top:人脸上边距离图片上边界的距离 ;bottom:人脸下边距离图片上边界的距离
for k, d in enumerate(dets):
    print("dets{}".format(d))
    print("Detection {}: Left: {} Top: {} Right: {} Bottom: {}".format(
    k, d.left(), d.top(), d.right(), d.bottom()))

    #使用predictor进行人脸关键点识别 shape为返回的结果
    shape = predictor(img, d)

    #获取第一个和第二个点的坐标(相对于图片而不是框出来的人脸)
    print("Part 0: {}, Part 1: {} ...".format(shape.part(0),  shape.part(1)))

    #绘制特征点
    win.add_overlay(shape)

#绘制人脸框
win.add_overlay(dets)


#也可以这样来获取(以一张脸的情况为例)
#get_landmarks()函数会将一个图像转化成numpy数组,并返回一个68 x2元素矩阵,输入图像的每个特征点对应每行的一个x,y坐标。
def get_landmarks(im):

    rects = detector(im, 1)

    return numpy.matrix([[p.x, p.y] for p in predictor(im, rects[0]).parts()])

#多张脸使用的一个例子
def get_landmarks_m(im):

    dets = detector(im, 1)

    #脸的个数
    print("Number of faces detected: {}".format(len(dets)))

    for i in range(len(dets)):

        facepoint = np.array([[p.x, p.y] for p in predictor(im, dets[i]).parts()])

        for i in range(68):

            #标记点
            im[facepoint[i][1]][facepoint[i][0]] = [232,28,8]        

    return im    

#打印关键点矩阵
print("face_landmark:")

print(get_landmarks(img))

#等待点击
dlib.hit_enter_to_continue()

运行的时候从代码里写好模型地址以及图片地址,以下是运行结果:

python基于dlib的face landmarks_第4张图片

命令行输出:

sora@sora:~/SORA/workspace/Project/face_landmark$ python face_landmark_detection0.2.py 
Number of faces detected: 1
dets[(113, 27) (267, 182)]
Detection 0: Left: 113 Top: 27 Right: 267 Bottom: 182
Part 0: (114, 58), Part 1: (115, 79) ...
face_landmark:
[[114  58]
 [115  79]
 [117  99]
 [121 119]
 [128 137]
 [140 154]
 [154 169]
 [169 182]
 [186 185]
 [202 181]
 [217 169]
 [233 155]
 [246 140]
 [256 122]
 [261 102]
 [264  81]
 [264  60]
 [127  60]
 [138  56]
 [151  57]
 [163  60]
 [175  66]
 [205  66]
 [217  62]
 [228  59]
 [239  57]
 [250  61]
 [191  79]
 [192  95]
 [192 111]
 [192 126]
 [176 127]
 [183 131]
 [191 134]
 [198 132]
 [204 128]
 [142  74]
 [151  69]
 [161  70]
 [169  78]
 [160  80]
 [149  79]
 [210  79]
 [217  71]
 [228  71]
 [236  76]
 [229  81]
 [219  81]
 [161 142]
 [173 143]
 [183 142]
 [190 145]
 [197 144]
 [206 145]
 [215 146]
 [205 156]
 [196 160]
 [188 161]
 [180 160]
 [171 155]
 [165 144]
 [182 149]
 [189 150]
 [197 150]
 [211 147]
 [196 150]
 [189 151]
 [181 149]]
Hit enter to continue

多张脸时的运行结果:

python基于dlib的face landmarks_第5张图片

你可能感兴趣的:(Python,计算机视觉,机器学习,计算机视觉编程)