Arithmetic problem | The Triangle

题目如下:

Figure 1 shows a number triangle. Write a program that calculates the highest sum of numbers passed on a route that starts at the top and ends somewhere on the base. Each step can go either diagonally down to the left or diagonally down to the right.

(Figure 1)
7
3 : 8
8 : 1 : 0
2 : 7 : 4 : 4
4 : 5 : 2 : 6 : 5

Input:

Your program is to read from standard input. The first line contains one integer N: the number of rows in the triangle. The following N lines describe the data of the triangle. The number of rows in the triangle is > 1 but <= 100. The numbers in the triangle, all integers, are between 0 and 99.

Output

Your program is to write to standard output. The highest sum is written as an integer.

Sample Input:

Triangle
7
3 : 8
8 : 1 : 0
2 : 7 : 4 : 4
4 : 5 : 2 : 6 : 5

Sample Output: 30

解题思路:
这题目是需要每一层选择一点组成线路而达到最大数值,用动态规划最大限度利用已有数据情报来计算是不错的选择。在这里每一层都是一个状态,逐步递增状态,分解问题成0-2层,0-3层。。。。0-(n-1)层的最大路线价值。通过n-2层的数据转移形成n-1层,一直下分n-3层->n-2层,n-4层->n-3层。。。主体来看还是比较简单的题目。

思路代码如下:

int Method(int **n,int len)
{
    int res=0;
    for(int i=1;i<len;++i)
    {
        for(int p=0;p<=i;++p)
        {
            if(p==0) *((int*)n+len*i+p)+= //n[i][p]
            *((int*)n+len*(i-1)+p); //n[i-1][p]
            else if(p==i) *((int*)n+len*i+p)+=
                *((int*)n+len*(i-1)+(p-1)); //n[i-1][p-1]
            else *((int*)n+len*i+p)+=
            max(*((int*)n+len*(i-1)+(p-1)),
                *((int*)n+len*(i-1)+p));
        }
    }
    for(int i=0;i<len;++i)
        res=max(res,
                *((int*)n+len*(len-1)+i));//n[len-1][i]
    return res;
}

你可能感兴趣的:(Arithmetic,problem,Arithmetic,problem,numbers,each,go)