spark读取HBase,处理输出到mysql

需求:

spark读取HBase中的数据,提取某三列,经过聚合,输出到mysql中。

代码实现:

import java.util.Properties

import org.apache.hadoop.hbase.HBaseConfiguration
import org.apache.hadoop.hbase.mapreduce.TableInputFormat
import org.apache.hadoop.hbase.util.Bytes
import org.apache.spark.sql.types.{DataTypes, StructField}
import org.apache.spark.sql.{RowFactory, SparkSession}
import org.apache.spark.{SparkConf, SparkContext}

import scala.collection.mutable.ListBuffer

object Demo {

  def main(args: Array[String]): Unit = {
    val sconf = new SparkConf().setAppName("demo").setMaster("local")
    val sc = new SparkContext(sconf)
    val spark = SparkSession.builder().getOrCreate()

    val prop = new Properties()
    prop.put("user", "root")
    prop.put("password", "123456")
    val url = "jdbc:mysql://192.168.1.12:3306/jp_analysis?useUnicode=true&characterEncoding=utf-8"

    // hbase配置
    val tableName = "buss_stu_info_tmp3"
//    val tableName = "user"
    val hconf = HBaseConfiguration.create()
    hconf.set("hbase.zookeeper.quorum","192.168.1.11, 192.168.1.12, 192.168.1.13")
    hconf.set("hbase.zookeeper.property.clientPort", "2181")
    hconf.set(TableInputFormat.INPUT_TABLE, tableName)

    // 读取数据并转化成rdd
    val hBaseRDD = sc.newAPIHadoopRDD(hconf, classOf[TableInputFormat],
      classOf[org.apache.hadoop.hbase.io.ImmutableBytesWritable],
      classOf[org.apache.hadoop.hbase.client.Result])

    val rdd = hBaseRDD.map(rdd => {
      val values = rdd._2
      val createtime = Bytes.toString(values.getValue(Bytes.toBytes("extInfo"), Bytes.toBytes("createtime"))).substring(0, 10).replaceAll("-", "")
      val discode = Bytes.toString(values.getValue(Bytes.toBytes("baseInfo"), Bytes.toBytes("discode")))
      val inscode = Bytes.toString(values.getValue(Bytes.toBytes("baseInfo"), Bytes.toBytes("inscode")))
      (createtime, discode, inscode)
    })

    // 已经聚合
    val rdd2 = rdd.map((_, 1)).reduceByKey(_ + _).sortBy(_._1._1).map(line => {
      RowFactory.create(line._1._1, line._1._2, line._1._3, new Integer(line._2))
    })//.foreach(println(_))

    val structFields = new ListBuffer[StructField]
    structFields.append(DataTypes.createStructField("datestring", DataTypes.StringType, false))
    structFields.append(DataTypes.createStructField("district", DataTypes.StringType, false))
    structFields.append(DataTypes.createStructField("inscode", DataTypes.StringType, false))
    structFields.append(DataTypes.createStructField("num", DataTypes.IntegerType, true))

    // 构建StructType,用于最后的DataFrame元数据描述
    val structType = DataTypes.createStructType(structFields.toArray)
    // 构造DataFrame
    val stuDF = spark.createDataFrame(rdd2, structType)
    // 写入数据
    stuDF.write.mode("append").jdbc(url, "buss_stu_info", prop)

    sc.stop()

  }

}

你可能感兴趣的:(大数据)