1、最长包含K次重复子串
2、实现平方根sqrt(x)
说那个话的时候是在那样的一种心醉的情形下,简直什么都可以相信,自己当然绝对相信那不是谎话。
——《半生缘》
Find the length of the longest substring T of a given string (consists of lowercase letters only) such that every character in T appears no less than k times.
Example 1:
Input:
s = “aaabb”, k = 3
Output:
3
The longest substring is “aaa”, as ‘a’ is repeated 3 times.
Example 2:
Input:
s = “ababbc”, k = 2
Output:
5
The longest substring is “ababb”, as ‘a’ is repeated 2 times and ‘b’ is repeated 3 times.
tag:
题意:找到最长子串,需要满足这个子串中每个字符出现次数均要大于K次。
思路:
1、如何找到这样的子串,找到一头一尾(first、last),并且中间的都满足出现次数大于等于K。每找到一个这样的last就更新一次,这样从一个first找到最后之后,每次查找之后将first移动到最后一个找到符合的last字符的后面一位。
class Solution {
public:
int longestSubstring(string s, int k) {
int max_len = 0;
int first,last;
int n = s.size();
for(first = 0;first+k<=n;)
{
int max_last=first;
int mask = 0;
int count[26] = {0};
for(last = first;lastlast++)
{
int i = s[last]-'a';
count[i]++;
if(count[i]1<else mask&=(~(1<if(mask==0)
{
max_len = max(max_len,last-first+1);
max_last = last;
}
}
if(max_len>=n-first) break;
first = max_last+1;
}
return max_len;
}
};
结果:3ms
2、递归写法,每次从当前区间[first,last]中去查找区间,先遍历一次做一次统计,然后统计完之后去找一个在[first,last]中出现大于等于K次的字符组成的区间,再递归去判断这个更小的区间。递归终止条件是更小的区间就是原区间,返回区间长度。
class Solution {
public:
int helper(const string& s,int k,int first,int last)
{
if(first>last) return 0;
int cnt[26] = {0};
for(int i=first;i<last;i++)
{
cnt[s[i]-'a']++;
}
int max_len=0;
int l=0,r=0;
for(l = first;l<last;)
{
while(l<last && cnt[s[l]-'a'] if(l==last) break;
r = l;
while(r<last && cnt[s[r]-'a']>=k) r++;
if(l==first && r==last) return r-l;
max_len = max(max_len,helper(s,k,l,r));
l = r;
}
return max_len;
}
int longestSubstring(string s, int k) {
int n = s.size();
if(n==0) return 0;
return helper(s,k,0,n);
}
};
结果:3ms
Implement int sqrt(int x).
Compute and return the square root of x.
tag:数学|二分
题意:实现平方根函数
思路:
1、用牛顿法去做,
x_{{n+1}}=x_{n}-{\frac {f(x_{n})}{f’(x_{n})}}
class Solution {
public:
int mySqrt(int x) {
long long r = x;
while(r*r>x)
{
r = (r+x/r)/2;
}
return r;
}
};
结果:6ms
2、二分查找
相当于找第一个<=sqrt(x)的整数,这种情况下要使用偏右的二分查找方法
class Solution {
public:
int mySqrt(int x) {
if(x==0) return 0;
int l = 1,r = x;
while(lint mid = l+(r-l+1)/2;
if(mid>x/mid) r = mid-1;
else if(midmid) l=mid;
else return mid;
}
return l;
}
};
结果:6ms