- AI人工智能 Agent:在保护隐私和数据安全中的应用
AI大模型应用之禅
DeepSeekR1&AI大模型与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
AI人工智能Agent:在保护隐私和数据安全中的应用关键词:AIAgent、隐私保护、数据安全、同态加密、联邦学习、区块链1.背景介绍1.1问题的由来随着人工智能技术的快速发展,AIAgent在各行各业得到了广泛应用。然而,在享受AI带来便利的同时,人们也越来越关注个人隐私和数据安全问题。传统的数据收集和处理方式存在隐私泄露风险,亟需探索如何在AI时代更好地保护用户隐私。1.2研究现状目前,学术界
- 人工智能算法安全优化实践路径
智能计算研究中心
其他
内容概要在人工智能技术深度融入产业实践的进程中,算法安全优化已成为保障系统可靠性与社会信任的核心命题。本文系统性梳理从数据预处理到模型落地的全流程安全实践路径,聚焦金融风控、医疗影像诊断、自动驾驶等关键场景,揭示算法开发中潜藏的伦理风险与技术挑战。通过整合自动化机器学习与联邦学习技术,构建跨数据孤岛的协作框架,同时引入可解释性算法增强模型透明度,确保决策逻辑可追溯、可验证。在模型优化维度,重点解析
- 金融风控与医疗影像算法创新前沿
智能计算研究中心
其他
内容概要在金融风控与医疗影像交叉领域,算法创新正推动两大行业的技术范式变革。联邦学习算法通过分布式数据协作机制,在保证隐私安全的前提下,显著提升金融风险预测模型的泛化能力。医疗影像诊断领域则依托三维卷积神经网络(3D-CNN)架构,实现了对CT、MRI等多模态影像的精准病灶分割,诊断准确率较传统方法提升23.6%。值得关注的是,可解释性算法(如LIME和SHAP)的深度应用,使两类场景中的模型决策
- 联邦学习与边缘模型优化赋能医疗诊断新路径
智能计算研究中心
其他
内容概要在医疗诊断智能化进程中,数据隐私保护与模型效能提升的双重需求催生出技术创新范式。联邦学习框架通过分布式模型训练机制,有效破解医疗机构间的数据壁垒,使跨机构的医学影像、病理数据在不离开本地服务器的前提下完成知识共享。与此同时,边缘计算节点部署将模型推理能力延伸至诊疗终端,CT影像实时分析响应时间缩短62%,显著提升急诊场景下的决策效率。建议医疗机构在部署联邦学习系统时,优先采用差分隐私与同态
- 联邦学习优化驱动医疗诊断新突破
智能计算研究中心
其他
内容概要医疗人工智能的发展长期面临数据孤岛与隐私合规的双重挑战,传统集中式训练模式难以满足多机构协作需求。联邦学习技术通过构建分布式训练框架,使医疗机构在不共享原始数据的前提下,实现跨域模型的协同优化。这一技术突破为医学影像识别、病理特征分析等场景提供了新的技术路径,特别是在肿瘤筛查领域,通过迁移学习实现跨病种知识迁移,配合超参数自动调优机制,可使模型在有限标注数据下达到95%以上的病灶识别准确率
- 2025保险与金融领域实战全解析:DeepSeek赋能细分领域深度指南(附全流程案例)
emmm形成中
deepseek细分领域应用人工智能金融人工智能python数据挖掘数据分析
2025保险与金融领域实战全解析:DeepSeek赋能细分领域深度指南(附全流程案例)目录DeepSeek在保险与金融中的核心价值保险领域:从风险建模到产品创新金融领域:从投资分析到财富管理区块链与联邦学习的应用探索客户关系与私域运营:全球化体验升级工具与资源推荐:从入门到精通未来趋势与挑战一、DeepSeek在保险与金融中的核心价值1.1DeepSeek的核心功能智能风险建模:通过大数据分析,精
- (10054, ‘远程主机强迫关闭了一个现有的连接。‘, None, 10054, None)(联邦学习+ray中常见问题)
还不秃顶的计科生
快捷操作编程技巧服务器前端运维
第一部分:问题描述(pid=24828)Filesalreadydownloadedandverified2025-02-2412:48:44,183ERRORimport_thread.py:89--ImportThread:Errorwhilereadingfromsocket:(10054,'远程主机强迫关闭了一个现有的连接。',None,10054,None)2025-02-2412:48
- 边缘计算与联邦学习驱动医疗影像特征工程优化
智能计算研究中心
其他
内容概要随着医疗影像数据规模的指数级增长与多模态成像技术的普及,传统集中式特征工程方法面临数据孤岛、隐私泄露及计算效率等多重挑战。本研究针对医疗影像分析场景中跨机构数据共享的复杂性,提出基于边缘计算与联邦学习的协同优化框架,通过分布式特征工程重构医学图像的解析范式。该框架以卷积神经网络为核心,结合多阶段数据预处理流程(包括噪声抑制、模态对齐及标准化处理),实现跨设备医疗影像的特征表示统一化。在模型
- 深度学习框架与边缘计算融合驱动医疗金融模型优化新路径
智能计算研究中心
其他
内容概要随着边缘计算与深度学习框架的深度融合,医疗与金融领域的模型优化正在突破传统算力与隐私保护的瓶颈。当前,TensorFlow、PyTorch等主流框架通过轻量化改造(如TensorFlowLite与PyTorchMobile)逐步适应边缘设备的资源限制,同时结合联邦学习技术构建分布式训练网络。这种技术协同不仅降低了医疗影像诊断中的数据传输延迟,还通过动态模型压缩策略(如量化与剪枝)将金融预测
- 边缘计算与联邦学习驱动医疗金融预测及模型可解释性技术突破
智能计算研究中心
其他
内容概要当前人工智能技术正经历多维度融合与迭代升级,边缘计算与联邦学习的协同创新成为突破性方向。通过将计算资源下沉至终端设备,边缘计算有效缓解了传统中心化架构的延迟与带宽压力,而联邦学习则在保障数据隐私的前提下,实现了跨机构模型的分布式训练。这种技术组合在医疗诊断与金融预测领域展现出显著优势,例如通过部署轻量化模型实现实时病理分析,或构建跨银行风险预测系统,同时满足监管合规需求。在模型优化层面,自
- 联邦学习: 统一数据协作和隐私保护的技术解决之道
小牍
大数据分布式数据安全
联邦学习:统一数据协作和隐私保护的技术解决之道1.数据价值和隐私2.隐私计算技术安全多方计算可信执行环境联邦学习3.联邦学习的拓展分布式机器学习联邦学习和传统分布式系统的差异联邦学习带来的挑战安全性补充实际案例讲解总结1.数据价值和隐私为什么需要隐私计算呢?数据的产生过程是分散的,数据具有天然的割裂性。不同类型的公司提供不同的业务和服务,产生的数据类型也是不同的,例如社交公司产生用户大量的社交数据
- 第26篇:pFedLoRA: Model-Heterogeneous Personalized Federated Learning with LoRA使用lora微调的模型异构个性化联邦学习
还不秃顶的计科生
联邦学习深度学习人工智能开发语言
第一部分:解决的问题联邦学习(FederatedLearning,FL)是一种分布式机器学习方法,允许客户端在本地数据上训练模型,同时通过中心服务器共享学习成果。传统FL框架假设客户端使用相同的模型结构(模型同构),但在实际中可能面对:统计异质性:客户端的数据分布不均(non-IID)。资源异质性:客户端硬件资源有限。模型异质性:客户端可能拥有不同的模型结构。模型异构的个性化联邦学习(MHPFL)
- 2024年Python最新联邦学习实战-2-用FATE从零实现横向逻辑回归,面试阿里巴巴客服
2401_84138785
程序员python逻辑回归面试
学好Python不论是就业还是做副业赚钱都不错,但要学会Python还是要有一个学习规划。最后大家分享一份全套的Python学习资料,给那些想学习Python的小伙伴们一点帮助!一、Python所有方向的学习路线Python所有方向路线就是把Python常用的技术点做整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。二、学习软件工欲善其
- 聚焦大模型!隐语技术团队研究成果被 ICASSP 与 ICLR 两大顶会收录
隐私开源模型
“隐语”是开源的可信隐私计算框架,内置MPC、TEE、同态等多种密态计算虚拟设备供灵活选择,提供丰富的联邦学习算法和差分隐私机制。开源项目:https://github.com/secretflowhttps://gitee.com/secretflow导语:2023年,「大模型」走到了聚光灯下,技术圈的“头部玩家”们纷纷入场,其潜能和价值正在被不断挖掘与释放。与此同时,大模型相关的隐私安全问题也
- DeepSeek底层揭秘——知识图谱与语料库的联邦学习架构
9命怪猫
知识图谱架构人工智能
目录1.知识图谱与语料库的联邦学习架构2.技术要素3.技术难点与挑战4.技术路径5.应用场景6.最新研究与技术进展7.未来趋势8.实际案例猫哥说1.知识图谱与语料库的联邦学习架构(1)定义“知识图谱与语料库的联邦学习架构”是一种结合知识图谱(KnowledgeGraph,KG)、语料库(Corpus)和联邦学习(FederatedLearning,FL)的分布式学习框架。其核心目标是通过联邦学习技
- 基于联邦学习的政务大数据平台应用研究
宋罗世家技术屋
计算机软件及理论发展专栏政务大数据
摘要当前数字政府建设已进入深水区,政务大数据平台作为数据底座支撑各类政务信息化应用,其隐私数据的安全性和合规性一直被业界广泛关注。联邦学习是一类解决数据孤岛的重要方法,基于联邦学习的政务一体化大数据平台应用具有较高的研究价值。首先,介绍政务大数据平台及联邦学习应用现状;然后,分析政务大数据平台面临的隐私数据的采集、分类分级、共享三大管理挑战;接着,阐述基于联邦学习的推荐算法和隐私集合求交技术的解决
- 三、隐语架构
人生相聚两依依
隐私计算架构可信计算技术密码学
一、架构隐语架构设计的出发点:1、完备性:目前隐私计算技术较多,没有哪一种技术具有明显优势,一般是通过多种技术结合互补优势综合使用2、高内聚低耦合3、开放性二、产品层三、算法层大致分为3类:PSI/PIR:具体见前2讲数据分析:一种多方安全数据分析系统,可以让互不信任的参与方在保护自己数据隐私的前提下,完成多方数据分析任务。联邦学习:在原始数据不出域的前提下,通过交换中间数据完成机器学习建模,包含
- DeepSeek联邦学习(Federated Learning)基础与实践
Evaporator Core
DeepSeek快速入门人工智能深度学习pythontornadodash
联邦学习(FederatedLearning,FL)是一种在分布式环境中训练模型的技术,允许多个设备或节点在不共享原始数据的情况下协同训练模型。这种方法在保护数据隐私的同时,能够利用分散的数据资源提升模型性能。DeepSeek提供了强大的工具和API,帮助我们高效地构建和训练联邦学习模型。本文将详细介绍如何使用DeepSeek进行联邦学习的基础与实践,并通过代码示例帮助你掌握这些技巧。1.联邦学习
- 在KubeFATE中定制化部署联邦学习组件的深入分析
亨利笔记
dockerkubernetes数据库java大数据
题图摄于国家大剧院(本文作者系VMware中国研发云原生实验室架构师,联邦学习开源项目KubeFATE/FATE-Operator维护者。)需要加入KubeFATE开源项目讨论群的同学,请关注亨利笔记公众号后回复“kubefate”即可。相关文章在JuypterNotebook中构建联邦学习任务云原生联邦学习平台KubeFATE原理详解用KubeFATE在K8s上部署联邦学习FATEv1.5使用D
- 联邦学习中客户端发送的梯度是vector而不是tensor
wzx_Eleven
联邦学习机器学习网络安全人工智能
在联邦学习中,当本地使用神经网络或深度学习模型时,训练的梯度通常是与模型参数(权重和偏置)相对应的梯度数据。具体来说,梯度的类型和形状取决于模型的结构(例如,卷积神经网络、全连接网络等),以及模型的层数、每层的神经元数量等因素。1.梯度类型:梯度是一个张量:在神经网络中,梯度通常是一个张量(tensor),每一层的梯度张量的形状和该层的权重形状相匹配。具体来说,梯度是损失函数对每个参数的偏导数,表
- 汇聚前沿|思腾合力邀您共赴可信联邦学习·武汉站
运维
可信联邦学习·武汉站于2024年11月18日-19日在武汉大学举办,其作为隐私计算与数据智能的重要力量,正引领着学术界与工业界的新一轮变革。为了推动可信联邦学习技术的深入发展,促进学术界与工业界的交流与合作,思腾合力诚挚地邀请您参加“可信联邦学习·武汉站”活动,共同探索可信联邦学习的未来之路。EventsInvitation活动邀请可信联邦学习·武汉站本次活动吸引了来自全国各大高校、研究机构及知名
- 联邦学习 Federated learning Google I/O‘19 笔记
努力搬砖的星期五
笔记联邦学习机器学习机器学习tensorflow
FederatedLearning:MachineLearningonDecentralizeddatahttps://www.youtube.com/watch?v=89BGjQYA0uE文章目录FederatedLearning:MachineLearningonDecentralizeddata1.DecentralizeddataEdgedevicesGboard:mobilekeyboa
- SAFEFL: MPC-friendly Framework for Private and Robust Federated Learning论文阅读笔记
慘綠青年627
论文阅读笔记深度学习
SAFEFL:MPC-friendlyFrameworkforPrivateandRobustFederatedLearning适用于私有和鲁棒联邦学习的MPC友好框架SAFEFL,这是一个利用安全多方计算(MPC)来评估联邦学习(FL)技术在防止隐私推断和中毒攻击方面的有效性和性能的框架。概述传统机器学习(ML):集中收集数据->隐私保护问题privacy-preservingML(PPML)采
- 探索联邦学习:保护隐私的机器学习新范式
洋葱蚯蚓
机器学习python机器学习人工智能神经网络深度学习算法
探索联邦学习:保护隐私的机器学习新范式前言联邦学习简介联邦学习的原理联邦学习的应用场景联邦学习示例代码结语前言 在数字化浪潮的推动下,我们步入了一个前所未有的数据驱动时代。海量的数据不仅为科学研究、商业决策和日常生活带来了革命性的变化,同时也带来了前所未有的挑战。尤其是数据隐私和安全问题,已经成为全球关注的焦点。 随着对个人隐私保护意识的增强,传统的集中式数据处理方式正逐渐暴露出其局限性。数据
- 网络安全: 模型的脆弱性,鲁棒性和隐私性
不当菜鸡的程序媛
学习记录web安全安全
在网络安全领域,通常描述模型安全性时,会提到以下三个特性:脆弱性(Vulnerability):指模型在某些情况下容易受到攻击或被利用的弱点。例如,模型可能对对抗性攻击或梯度泄露攻击敏感。鲁棒性(Robustness):指模型抵御攻击和在恶劣环境下保持性能的能力。提高模型的鲁棒性是增强其抵御攻击能力的关键。隐私性(Privacy):指保护模型或其训练数据免受信息泄露的能力。隐私性问题在联邦学习和其
- 实践案例|孟宪超:基于隐语深度学习在保险联合定价中的应用(附演讲视频)
隐私开源
“隐语”是开源的可信隐私计算框架,内置MPC、TEE、同态等多种密态计算虚拟设备供灵活选择,提供丰富的联邦学习算法和差分隐私机制。开源项目:https://github.com/secretflowhttps://gitee.com/secretflow演讲实录11月25日,「隐语开源社区Meetup·西安站」顺利举办,本文为大家带来的是蚂蚁集团车险精算平台技术专家孟宪超,在「隐语开源社区Meet
- 【Deep Dive:AI Webinar】联邦学习-数据安金性和隐私性分析的思维转换
开源社
人工智能
【深入探讨人工智能】网络研讨系列总共有17个视频。我们按照视频内容,大致上分成了3个大类:1.人工智能的开放、风险与挑战(4篇)2.人工智能的治理(总共12篇),其中分成了几个子类:a.人工智能的治理框架(3篇)b.人工智能的数据治理(4篇)c.人工智能的许可证(4篇)d.人工智能的法案(1篇)3.炉边对谈-谁在构建开源人工智能?今天发布的是第11个视频,亦即第二个大类别“人工智能的治理”里的第二
- Apache Pulsar 在腾讯 Angel PowerFL 联邦学习平台上的实践
StreamNative
腾讯AngelPowerFL联邦学习平台联邦学习作为新一代人工智能基础技术,通过解决数据隐私与数据孤岛问题,重塑金融、医疗、城市安防等领域。腾讯AngelPowerFL联邦学习平台构建在Angel机器学习平台上,利用Angel-PS支持万亿级模型训练的能力,将很多在Worker上的计算提升到PS(参数服务器)端;AngelPowerFL为联邦学习算法提供了计算、加密、存储、状态同步等基本操作接口,
- 联邦学习-安全树模型 SecureBoost之Desicion Tree
秃顶的码农
联邦学习-安全树模型SecureBoost之DesicionTree1联邦学习背景鉴于数据隐私的重要性,国内外对于数据的保护意识逐步加强。2018年欧盟发布了《通用数据保护条例》(GDPR),我国国家互联网信息办公室起草的《数据安全管理办法(征求意见稿)》因此数据在安全合规的前提下自由流动,成了大势所趋。这些法律法规的出台,不同程度的对人工智能传统处理数据的方式提出更多的挑战。AI高度发展的今天,
- 最新论文笔记(+21):Privacy-Preserving Byzantine-Robust Federated Learning via Blockchain Systems/ TIFS2022
cryptocxf
论文笔记联邦学习论文阅读区块链
Privacy-PreservingByzantine-RobustFederatedLearningviaBlockchainSystems可译为“利用区块链实现隐私保护的拜占庭鲁棒性联邦学习”这篇是今年八月份被TIFS2022(CCFA)收录的文章,写的利用全同态加密和区块链技术解决联邦学习中隐私问题和可信问题(虽然区块链仅仅只是存储的作用,也稍微提了一下)。精读完这篇文章,整体感觉还不错,毕
- mondb入手
木zi_鸣
mongodb
windows 启动mongodb 编写bat文件,
mongod --dbpath D:\software\MongoDBDATA
mongod --help 查询各种配置
配置在mongob
打开批处理,即可启动,27017原生端口,shell操作监控端口 扩展28017,web端操作端口
启动配置文件配置,
数据更灵活 
- 大型高并发高负载网站的系统架构
bijian1013
高并发负载均衡
扩展Web应用程序
一.概念
简单的来说,如果一个系统可扩展,那么你可以通过扩展来提供系统的性能。这代表着系统能够容纳更高的负载、更大的数据集,并且系统是可维护的。扩展和语言、某项具体的技术都是无关的。扩展可以分为两种:
1.
- DISPLAY变量和xhost(原创)
czmmiao
display
DISPLAY
在Linux/Unix类操作系统上, DISPLAY用来设置将图形显示到何处. 直接登陆图形界面或者登陆命令行界面后使用startx启动图形, DISPLAY环境变量将自动设置为:0:0, 此时可以打开终端, 输出图形程序的名称(比如xclock)来启动程序, 图形将显示在本地窗口上, 在终端上输入printenv查看当前环境变量, 输出结果中有如下内容:DISPLAY=:0.0
- 获取B/S客户端IP
周凡杨
java编程jspWeb浏览器
最近想写个B/S架构的聊天系统,因为以前做过C/S架构的QQ聊天系统,所以对于Socket通信编程只是一个巩固。对于C/S架构的聊天系统,由于存在客户端Java应用,所以直接在代码中获取客户端的IP,应用的方法为:
String ip = InetAddress.getLocalHost().getHostAddress();
然而对于WEB
- 浅谈类和对象
朱辉辉33
编程
类是对一类事物的总称,对象是描述一个物体的特征,类是对象的抽象。简单来说,类是抽象的,不占用内存,对象是具体的,
占用存储空间。
类是由属性和方法构成的,基本格式是public class 类名{
//定义属性
private/public 数据类型 属性名;
//定义方法
publ
- android activity与viewpager+fragment的生命周期问题
肆无忌惮_
viewpager
有一个Activity里面是ViewPager,ViewPager里面放了两个Fragment。
第一次进入这个Activity。开启了服务,并在onResume方法中绑定服务后,对Service进行了一定的初始化,其中调用了Fragment中的一个属性。
super.onResume();
bindService(intent, conn, BIND_AUTO_CREATE);
- base64Encode对图片进行编码
843977358
base64图片encoder
/**
* 对图片进行base64encoder编码
*
* @author mrZhang
* @param path
* @return
*/
public static String encodeImage(String path) {
BASE64Encoder encoder = null;
byte[] b = null;
I
- Request Header简介
aigo
servlet
当一个客户端(通常是浏览器)向Web服务器发送一个请求是,它要发送一个请求的命令行,一般是GET或POST命令,当发送POST命令时,它还必须向服务器发送一个叫“Content-Length”的请求头(Request Header) 用以指明请求数据的长度,除了Content-Length之外,它还可以向服务器发送其它一些Headers,如:
- HttpClient4.3 创建SSL协议的HttpClient对象
alleni123
httpclient爬虫ssl
public class HttpClientUtils
{
public static CloseableHttpClient createSSLClientDefault(CookieStore cookies){
SSLContext sslContext=null;
try
{
sslContext=new SSLContextBuilder().l
- java取反 -右移-左移-无符号右移的探讨
百合不是茶
位运算符 位移
取反:
在二进制中第一位,1表示符数,0表示正数
byte a = -1;
原码:10000001
反码:11111110
补码:11111111
//异或: 00000000
byte b = -2;
原码:10000010
反码:11111101
补码:11111110
//异或: 00000001
- java多线程join的作用与用法
bijian1013
java多线程
对于JAVA的join,JDK 是这样说的:join public final void join (long millis )throws InterruptedException Waits at most millis milliseconds for this thread to die. A timeout of 0 means t
- Java发送http请求(get 与post方法请求)
bijian1013
javaspring
PostRequest.java
package com.bijian.study;
import java.io.BufferedReader;
import java.io.DataOutputStream;
import java.io.IOException;
import java.io.InputStreamReader;
import java.net.HttpURL
- 【Struts2二】struts.xml中package下的action配置项默认值
bit1129
struts.xml
在第一部份,定义了struts.xml文件,如下所示:
<!DOCTYPE struts PUBLIC
"-//Apache Software Foundation//DTD Struts Configuration 2.3//EN"
"http://struts.apache.org/dtds/struts
- 【Kafka十三】Kafka Simple Consumer
bit1129
simple
代码中关于Host和Port是割裂开的,这会导致单机环境下的伪分布式Kafka集群环境下,这个例子没法运行。
实际情况是需要将host和port绑定到一起,
package kafka.examples.lowlevel;
import kafka.api.FetchRequest;
import kafka.api.FetchRequestBuilder;
impo
- nodejs学习api
ronin47
nodejs api
NodeJS基础 什么是NodeJS
JS是脚本语言,脚本语言都需要一个解析器才能运行。对于写在HTML页面里的JS,浏览器充当了解析器的角色。而对于需要独立运行的JS,NodeJS就是一个解析器。
每一种解析器都是一个运行环境,不但允许JS定义各种数据结构,进行各种计算,还允许JS使用运行环境提供的内置对象和方法做一些事情。例如运行在浏览器中的JS的用途是操作DOM,浏览器就提供了docum
- java-64.寻找第N个丑数
bylijinnan
java
public class UglyNumber {
/**
* 64.查找第N个丑数
具体思路可参考 [url] http://zhedahht.blog.163.com/blog/static/2541117420094245366965/[/url]
*
题目:我们把只包含因子
2、3和5的数称作丑数(Ugly Number)。例如6、8都是丑数,但14
- 二维数组(矩阵)对角线输出
bylijinnan
二维数组
/**
二维数组 对角线输出 两个方向
例如对于数组:
{ 1, 2, 3, 4 },
{ 5, 6, 7, 8 },
{ 9, 10, 11, 12 },
{ 13, 14, 15, 16 },
slash方向输出:
1
5 2
9 6 3
13 10 7 4
14 11 8
15 12
16
backslash输出:
4
3
- [JWFD开源工作流设计]工作流跳跃模式开发关键点(今日更新)
comsci
工作流
既然是做开源软件的,我们的宗旨就是给大家分享设计和代码,那么现在我就用很简单扼要的语言来透露这个跳跃模式的设计原理
大家如果用过JWFD的ARC-自动运行控制器,或者看过代码,应该知道在ARC算法模块中有一个函数叫做SAN(),这个函数就是ARC的核心控制器,要实现跳跃模式,在SAN函数中一定要对LN链表数据结构进行操作,首先写一段代码,把
- redis常见使用
cuityang
redis常见使用
redis 通常被认为是一个数据结构服务器,主要是因为其有着丰富的数据结构 strings、map、 list、sets、 sorted sets
引入jar包 jedis-2.1.0.jar (本文下方提供下载)
package redistest;
import redis.clients.jedis.Jedis;
public class Listtest
- 配置多个redis
dalan_123
redis
配置多个redis客户端
<?xml version="1.0" encoding="UTF-8"?><beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi=&quo
- attrib命令
dcj3sjt126com
attr
attrib指令用于修改文件的属性.文件的常见属性有:只读.存档.隐藏和系统.
只读属性是指文件只可以做读的操作.不能对文件进行写的操作.就是文件的写保护.
存档属性是用来标记文件改动的.即在上一次备份后文件有所改动.一些备份软件在备份的时候会只去备份带有存档属性的文件.
- Yii使用公共函数
dcj3sjt126com
yii
在网站项目中,没必要把公用的函数写成一个工具类,有时候面向过程其实更方便。 在入口文件index.php里添加 require_once('protected/function.php'); 即可对其引用,成为公用的函数集合。 function.php如下:
<?php /** * This is the shortcut to D
- linux 系统资源的查看(free、uname、uptime、netstat)
eksliang
netstatlinux unamelinux uptimelinux free
linux 系统资源的查看
转载请出自出处:http://eksliang.iteye.com/blog/2167081
http://eksliang.iteye.com 一、free查看内存的使用情况
语法如下:
free [-b][-k][-m][-g] [-t]
参数含义
-b:直接输入free时,显示的单位是kb我们可以使用b(bytes),m
- JAVA的位操作符
greemranqq
位运算JAVA位移<<>>>
最近几种进制,加上各种位操作符,发现都比较模糊,不能完全掌握,这里就再熟悉熟悉。
1.按位操作符 :
按位操作符是用来操作基本数据类型中的单个bit,即二进制位,会对两个参数执行布尔代数运算,获得结果。
与(&)运算:
1&1 = 1, 1&0 = 0, 0&0 &
- Web前段学习网站
ihuning
Web
Web前段学习网站
菜鸟学习:http://www.w3cschool.cc/
JQuery中文网:http://www.jquerycn.cn/
内存溢出:http://outofmemory.cn/#csdn.blog
http://www.icoolxue.com/
http://www.jikexue
- 强强联合:FluxBB 作者加盟 Flarum
justjavac
r
原文:FluxBB Joins Forces With Flarum作者:Toby Zerner译文:强强联合:FluxBB 作者加盟 Flarum译者:justjavac
FluxBB 是一个快速、轻量级论坛软件,它的开发者是一名德国的 PHP 天才 Franz Liedke。FluxBB 的下一个版本(2.0)将被完全重写,并已经开发了一段时间。FluxBB 看起来非常有前途的,
- java统计在线人数(session存储信息的)
macroli
javaWeb
这篇日志是我写的第三次了 前两次都发布失败!郁闷极了!
由于在web开发中常常用到这一部分所以在此记录一下,呵呵,就到备忘录了!
我对于登录信息时使用session存储的,所以我这里是通过实现HttpSessionAttributeListener这个接口完成的。
1、实现接口类,在web.xml文件中配置监听类,从而可以使该类完成其工作。
public class Ses
- bootstrp carousel初体验 快速构建图片播放
qiaolevip
每天进步一点点学习永无止境bootstrap纵观千象
img{
border: 1px solid white;
box-shadow: 2px 2px 12px #333;
_width: expression(this.width > 600 ? "600px" : this.width + "px");
_height: expression(this.width &
- SparkSQL读取HBase数据,通过自定义外部数据源
superlxw1234
sparksparksqlsparksql读取hbasesparksql外部数据源
关键字:SparkSQL读取HBase、SparkSQL自定义外部数据源
前面文章介绍了SparSQL通过Hive操作HBase表。
SparkSQL从1.2开始支持自定义外部数据源(External DataSource),这样就可以通过API接口来实现自己的外部数据源。这里基于Spark1.4.0,简单介绍SparkSQL自定义外部数据源,访
- Spring Boot 1.3.0.M1发布
wiselyman
spring boot
Spring Boot 1.3.0.M1于6.12日发布,现在可以从Spring milestone repository下载。这个版本是基于Spring Framework 4.2.0.RC1,并在Spring Boot 1.2之上提供了大量的新特性improvements and new features。主要包含以下:
1.提供一个新的sprin