- YOLOv8实现手写数字识别系统:从MNIST到实时摄像头检测
在深度学习领域,手写数字识别是一个经典问题,也是入门计算机视觉的重要案例。本文将介绍一个基于YOLOv8和MNIST数据集的手写数字识别系统,该系统不仅能识别静态图像中的数字,还能通过摄像头实时检测手写数字。个人博客:YOLOv8实现手写数字识别系统:从MNIST到实时摄像头检测-iDing's博客项目概述这个项目结合了传统的MNIST数据集和现代的目标检测算法YOLOv8,实现了以下功能:将MN
- 《叛军岭》2024Netflix电影在线观看免费【1080p超清中字】逆岭完整未删减版百度云/夸克迅雷资源网盘免费高清链接下载
e95cfad15310
由杰瑞米·索尔尼尔执导的《叛军岭》是一部融合了动作与惊悚元素的电影,主演阵容包括亚伦·皮埃尔、唐·约翰逊和安娜索菲亚·罗伯。影片讲述了一个充满挑战和危险的救赎之旅,充满紧张感和视觉冲击。提示:文章排版原因,观影资源链接地址放在文章结尾,往下翻就行提示:文章排版原因,观影资源链接地址放在文章结尾,往下翻就行故事的主角泰瑞·里士满(亚伦·皮埃尔饰)来到谢尔比斯普林斯镇,其目的是为表弟争取保释,并从危险
- 基于深度学习的手写数字和符号识别系统:YOLOv5/v6/v7/v8/v10模型实现与UI界面集成
YOLO实战营
深度学习YOLOui人工智能目标检测计算机视觉
1.引言随着人工智能和深度学习技术的发展,手写数字和符号识别已经成为计算机视觉领域的重要研究方向。手写识别在很多实际应用中扮演着关键角色,例如邮政编码识别、表单自动处理和智能教育系统等。传统的手写识别方法通常依赖于复杂的特征工程,而深度学习则能够自动从数据中学习到特征,极大地提高了识别精度和速度。本文将介绍如何构建一个基于YOLO系列模型(YOLOv5、YOLOv6、YOLOv7、YOLOv8、Y
- 《调色师手册:电影和视频调色专业技法(第2版)》——布置调色工作间
本节书摘来自异步社区《调色师手册:电影和视频调色专业技法(第2版)》一书中的第2章,布置调色工作间,作者【美】AlexisVanHurkman(阿列克谢·凡·赫克曼),译者高铭,陈华,更多章节内容可以访问云栖社区“异步社区”公众号查看。布置调色工作间观众观看节目所处的观影环境对于图像视觉效果的影响几乎与监视器质量带来的影响一样大。另一方面,你所使用的监视器种类也决定了你需要怎样布置房间。如果你在对
- 梨花熊怎么填写邀请码?梨花熊官方邀请码是多少?梨花狗app邀请码怎么填?
如简导师
在互联网的广阔天地中,有一个独特而迷人的存在——梨花熊。那么,梨花熊究竟是什么呢?梨花熊是一个充满创意与活力的平台。它犹如一座奇幻的花园,绽放着无数绚丽多彩的想象之花。在这里,艺术与设计完美融合,为人们带来一场场视觉盛宴。从精美的插画到独特的手工艺品,梨花熊汇聚了众多才华横溢的创作者。他们用手中的画笔、工具,将内心的世界生动地展现出来。每一件作品都仿佛在诉说着一个故事,或温暖、或奇幻、或感人,触动
- 为何大厂 B 端系统登录页都长这样?深挖背后的设计底层逻辑
你有没有注意到,无论是阿里云、腾讯云、还是企业微信的后台系统登录页,它们看起来都“差不多”?统一的布局结构、相似的视觉风格、甚至背景图的选择都很雷同。这难道只是巧合吗?为什么这些大厂明明有顶尖的设计团队,却都不约而同地选择了“千篇一律”的设计风格?真的是没有创意?还是背后藏着某种看不见的规则和逻辑?这篇文章将带你深入剖析B端系统登录页背后的底层设计思维。你会发现,这些看似“无聊”的页面,其实每一处
- 有声配音平台是什么,有声配音是真的假的
配音就业圈
在这个信息爆炸、多媒体融合的时代,有一种力量,它跨越了文字与视觉的界限,以声音为媒介,让故事生动再现,情感深刻传递。这便是——有声配音平台,一个将声音艺术与数字科技完美结合的全新舞台。配音兼职接单推荐公众号,配音新手圈,声优配音圈,新配音兼职圈,配音就业圈,鼎音副业,有声新手圈,每天更新各种的配音任务,新手小白也可以接单。1、配音新手圈这是一个公众号配音新手圈里面每天更新配音任务(只要有手机就可以
- OpenCV中常用特征提取算法(SURF、ORB、SIFT和AKAZE)用法示例(C++和Python)
点云SLAM
图形图像处理opencv算法ORB算法SIFT算法SURF算法AKAZE算法计算机视觉
OpenCV中提供了多种常用的特征提取算法,广泛应用于图像匹配、拼接、SLAM、物体识别等任务。以下是OpenCV中几个主流特征提取算法的用法总结与代码示例,涵盖C++和Python两个版本。常用特征提取算法列表算法特点是否需额外模块SIFT(尺度不变特征)稳定性强、可旋转缩放xfeatures2d模块SURF(加速稳健特征)快速但专利保护xfeatures2d模块ORB(OrientedFAST
- OpenCV学习(二)-二维、三维识别
香蕉可乐荷包蛋
#OpenCVopencv学习人工智能
OpenCV是一个功能强大的计算机视觉库,可以用于识别和处理二维图像和三维图像。以下是关于二维图像和三维图像识别的基础知识和示例代码。1.二维图像识别二维图像识别通常包括图像分类、对象检测、特征提取等任务。以下是一些常见的操作:1.1图像分类使用预训练模型对图像进行分类,例如使用深度学习模型(如ResNet、MobileNet等)。importcv2#加载预训练的深度学习模型net=cv2.dnn
- 智界R7智驾功能和性能评价
TheWanderers
智能驾驶智界
一、智驾行车能力标题硬件配置与系统架构感知硬件:Max/Ultra版搭载1个192线激光雷达、3个毫米波雷达(含1个4D成像雷达)、12个超声波雷达、11个高清摄像头(含前向800万像素双目+鱼眼镜头)。Pro版未配备激光雷达,但保留3个毫米波雷达和10个摄像头。核心算法:HUAWEIADS3.0系统,基于端到端架构,整合感知、决策与控制模块,支持全场景目标识别(如非标准障碍物、夜间行人)。算力支
- YOLOv5改进策略|YOLOv5 ⾃主检查和跟踪相关的任务|基于视觉的⽆⼈⽔⾯舰艇⾃主导航 极端海洋条件
斌擎人工智能官方账号
YOLO人工智能YOLOv5目标检测计算机视觉深度学习自主导航
目录介绍解决方案目标检测的视觉结论视觉感知是无人水面舰艇(USV)自主导航的重要组成部分,特别是与自主检查和跟踪相关的任务。这些任务涉及基于视觉的导航技术来识别导航目标。海洋环境中极端天气条件下的能⻅度降低使得基于视觉的方法难以正常工作。为了克服这些问题,本文提出了一种基于视觉的自主导航框架,用于在极端海洋条件下跟踪目标物体。所提出的框架由一个集成感知管道组成,该管道使用生成对抗网络(GAN)来消
- 5万人流挤地铁如何追踪?陌讯算法实战FPS飙升300%
开篇痛点在智慧城市安防场景中,传统视觉算法常面临“三难困境”:低光照漏检率飙升(夜间误报率超30%)、人群遮挡ID切换混乱(MOTA指标<50%)、硬件资源吃紧(1080P视频流处理>200ms)。某省会交警平台曾反馈:“雨雾天车牌识别准确率骤降至65%,追踪目标平均5分钟丢失1次”。技术解析:动态多目标蒸馏网络陌讯视觉算法创新性融合多任务蒸馏架构与时空注意力机制,攻克复杂场景泛化难题。核心公式创
- 离岗误报率 20%?陌讯时序算法实测降 90%
2501_92474711
算法计算机视觉目标跟踪机器学习人工智能边缘计算
开篇:工业安防中的"隐形漏洞"在制造业车间、变电站等关键场景,离岗检测是保障生产安全的核心环节。传统监控系统依赖人工巡检,存在85%的漏检率;而普通视觉算法在光照变化、人员遮挡场景下,误报率常高达20%以上[实测数据显示]。某汽车零部件厂曾因离岗检测失效导致设备空转2小时,直接损失超12万元。这种"看得见的监控,防不住的风险"困境,凸显了传统视觉方案在复杂工业场景中的局限性。技术解析:从单帧检测到
- 雨天障碍物漏检?陌讯多模态算法实测 98% 准确率
2501_92474711
算法目标跟踪人工智能计算机视觉
开篇痛点:自动驾驶视觉系统的“暗礁”在自动驾驶感知层,路面障碍物识别堪称“生命线工程”。传统视觉算法在复杂场景下常面临三重困境:雨天水雾导致特征模糊时漏检率高达25%,逆光环境下小目标(如碎石、井盖)检出率不足60%,而追求高精度又会导致帧率跌破20FPS,难以满足实时性要求[1]。某车企实测数据显示,传统YOLOv8在城郊混合路况中,因障碍物识别延迟引发的决策偏差占测试事故的37%,这些问题成为
- ros2 server 可以设置命令同时获取位置
一个自定义服务SetCommandGetPose.srv:请求字段float32command响应字段geometry_msgs/Posepose服务端收到请求后,把command缓存下来,再把当前位姿填进响应返回。为了便于演示,位置用一个简单计数器模拟;你可以把它替换成TF、里程计或SLAM输出。一、创建功能包bash复制ros2pkgcreate--build-typeament_cmakep
- 监控漏检频发?陌讯YOLOv7实时优化方案召回率提升25%
2501_92489016
目标跟踪人工智能计算机视觉算法目标检测视觉检测智慧城市
一、开篇痛点在安防监控领域,传统目标检测模型面临三重困境:实时性差:1080P视频流处理普遍低于20FPS(VGG16仅15FPS)漏检率高:密集场景下小目标召回率常低于60%(COCO-val实测数据)部署成本高:ResNet-101需8GB显存,难以边缘化部署某智慧园区项目显示:夜间误报率高达34%,运维成本激增300%二、技术解析:陌讯SlimYOLO架构创新针对上述痛点,陌讯视觉算法提出三
- 计算机视觉产品推荐,个性化推荐:人工智能中的计算机视觉、NLP自然语言处理和个性化推荐系统哪个前景更好一些?...
这个问题直接回答的话可能还是有着很强的个人观点,所以不如先向你介绍一些这几个领域目前的研究现状和应用情况(不再具体介绍其中原理)你自己可以斟酌一下哪方面更适合自己个性化推荐。一.所谓计算机视觉,是指使用计算机及相关设备对生物视觉的一种模拟个性化推荐。它的主要任务就是通过对采集的图片或视频进行处理以获得相应场景的三维信息,就像人类和许多其他类生物每天所做的那样[1]。现在人工智能的计算机视觉主要研究
- 监控漏检率 30%?陌讯多模态算法实测优化
破解智慧城市视觉算法困境:陌讯多模态融合技术实战解析在智慧城市建设中,视觉算法作为感知层核心技术,正面临着日益严峻的挑战。传统目标检测算法在暴雨、逆光、遮挡等复杂环境下,漏检率常高达25%-40%,直接导致交通违章误判、异常事件漏报等问题。某新一线城市交管部门曾反馈,现有系统对无牌车的识别准确率不足65%,严重影响执法效率[实测数据来源]。这些痛点的核心在于传统单模态算法难以应对城市环境的动态变化
- 河道污染难溯源?3步搭建陌讯实时目标检测系统
2501_92472966
目标检测人工智能计算机视觉算法视觉检测
开篇痛点「凌晨3点水泵房渗漏报警,运维人员冒雨排查却是一场误判」——这是某水务企业技术总监向我吐槽的真实案例。在智慧水务场景中,传统视觉算法面临三大死穴:水体反光干扰、微小目标漏检、边缘设备算力受限。尤其当暴雨导致水体浑浊时,OpenCV边缘检测的误报率可达35%以上。技术解析:陌讯多模态融合架构为解决复杂环境泛化问题,陌讯视觉算法提出FMT-Net(FusionMultimodalTransfo
- Visual Autoregressive Modeling: Scalable Image Generation via Next-Scale Prediction
zzfive
生成模型论文阅读kotlin开发语言android
论文链接:VisualAutoregressiveModeling:ScalableImageGenerationviaNext-ScalePrediction文章目录简介预测下一个token自回归模型范式分析VAR详解分词实现细节幂律缩放定律零样本泛化能力结论简介本文提出的视觉自回归建模/VAR这种新范式,其将图像的自回归学习重新定义为从粗到细的“下一个尺度预测”或“下一个分辨率预测”,与常规的
- 基于深度学习的目标检测:从基础到实践
Blossom.118
机器学习与人工智能深度学习目标检测人工智能音视频语音识别计算机视觉机器学习
前言目标检测(ObjectDetection)是计算机视觉领域中的一个核心任务,其目标是在图像中定位和识别多个对象的类别和位置。近年来,深度学习技术,尤其是卷积神经网络(CNN),在目标检测任务中取得了显著进展。本文将详细介绍如何使用深度学习技术构建目标检测模型,从理论基础到代码实现,带你一步步掌握目标检测的完整流程。一、目标检测的基本概念(一)目标检测的定义目标检测是指在图像中识别和定位多个对象
- “显著性”(Saliency)是计算机视觉中的一个重要概念,主要指的是图像或视频中最吸引人注意力的区域或对象
步步咏凉天
计算机视觉人工智能
“显著性”(Saliency)是计算机视觉中的一个重要概念,主要指的是图像或视频中最吸引人注意力的区域或对象。它模拟的是人类视觉系统对视觉场景中“显著”区域的感知能力。显著性可以用于图像理解、目标检测、图像压缩、图像分割等多个任务。下面是对显著性在计算机视觉中的几个关键方面的解释:一、显著性检测(SaliencyDetection)显著性检测的目标是预测图像中最能吸引人注意的区域,通常输出一个与输
- CSS实现前端响应式布局
一、响应式布局概述响应式布局的定义与重要性响应式布局是一种能够使网页在不同设备上(如桌面电脑、平板电脑、手机等)都能呈现出良好视觉效果和用户体验的设计方法。它通过使用灵活的布局、可适应的图像和媒体查询等技术,确保网页能够根据设备的屏幕尺寸、分辨率和方向进行自动调整和优化。在当今数字化时代,响应式布局至关重要。随着移动设备的广泛使用,用户越来越多地通过各种设备访问网页。如果网页不能在不同设备上良好地
- 读《认知天性》(1)
云城梦天
认知是对天性是挑战认知可以用数学统计与实践客观来评价,而我感觉是一种自我感知。当未知时,感知痛苦然而这是个时习之中乐的过程。也可以通过rain和轻疗的方法安抚情绪编码,可以以好奇心与视觉画面联动来做记忆编码的过程,因人是视觉性爬行动物,且好奇心也是人的天性好奇时会主动探索算是翻转式学习的一种,编码是记忆过程。另外你可能对记忆中某一刻的感觉记得很清楚,然而忘记了内容,人或许也是感觉爬行动物。巩固,可
- MATC:通过数学推理和图表还原增强视觉语言预训练
AI专题精讲
模型加速人工智能AI技术应用多模态视觉语言
温馨提示:本篇文章已同步至"AI专题精讲"MATC:通过数学推理和图表还原增强视觉语言预训练摘要视觉语言数据,如图表、图形和信息图,在人类世界中无处不在。然而,现有的最先进的视觉语言模型在这些数据上的表现并不理想。我们提出了MATCHA(数学推理与图表去渲染预训练),旨在增强视觉语言模型在联合建模图表/图形与语言数据方面的能力。具体而言,我们提出了几个预训练任务,涵盖了图形解构和数值推理,这些是视
- 基于YOLOv8的火灾智能检测系统设计与实现
斟的是酒中桃
深度学习人工智能pyqtyolo
在各类安全事故中,火灾因其突发性强、破坏力大,一直是威胁人们生命财产安全的重大隐患。传统的火灾检测方式多依赖烟雾传感器、温度传感器等,存在响应滞后、易受环境干扰等问题。随着深度学习技术的飞速发展,基于计算机视觉的火灾检测方法凭借其实时性强、检测范围广等优势,逐渐成为研究热点。本文将简单介绍一款基于深度学习的火灾智能检测系统的设计与实现过程。一、系统整体设计本火灾智能检测系统旨在通过深度学习技术实现
- 3D TOF 安全防护传感器
Laurel Vision
3DTOF3d安全计算机视觉
背景3DTOF安全防护传感器是一种先进的传感器技术,主要用于工业自动化、物流仓储、机器人应用等领域。基于3DToF原理,即飞行时间法的传感器,通过测量光脉冲从发射到接收的时间来计算物体与传感器之间的距离,从而获取三维空间信息,实现立体成像。立体安全传感器功能特性:空间安全防护:相比传统二维区域防护,三维立体具有更高安全性和灵活性。高精度:相比激光雷达精度更高,重复精度可达毫米级。简便软件设置
- 手持激光雷达单木分割——以河南工程学院杰出校友杨靖宇将军雕塑背后树林为例
河工点云智绘WangG
河工点云智绘教育培训
教学相长,最近带学生激光雷达实习,采集了河南工程学院校园机载、车载和手持激光雷达数据,针对手持激光雷达,也来玩玩单木分割。一、手持激光雷达单木分割概念单木分割(IndividualTreeSegmentation)是从激光雷达(LiDAR)点云数据中识别并分离出单棵树木的过程,是林业资源调查、森林碳汇估算、生物多样性研究的关键技术。二、关键技术步骤详解1.点云预处理去噪:移除飞点、鸟群等非地表物体
- 物流3D工业相机:解锁自动化物流新纪元
在当今工业4.0浪潮中,物流自动化已成为企业提升效率、降低成本的战略核心。作为工业自动化领域的先锋,迁移科技凭借其先进的3D工业视觉技术,正重塑物流场景的运作模式。本文将从品牌介绍出发,深入剖析物流3D工业相机的应用价值,结合真实案例,揭示其如何从基础功能延伸至产业价值,助力企业实现智能化转型。迁移科技,工业视觉的引领者迁移科技成立于2017年,作为行业领先的3D工业相机和3D视觉系统供应商,已累
- 3D Gaussian Splatting (3DGS) 从入门到精通:安装、训练与常见问题全解析
3DGaussianSplatting(3DGS)从入门:安装、训练与常见问题全解析3DGaussianSplatting(3DGS)作为一种新兴的实时神经渲染技术,以其惊人的渲染速度和高质量的视觉效果迅速获得了社区的关注。然而,从环境配置到数据准备,再到模型训练和结果导出,整个流程中充满了各种可能令人困惑的“坑”。本文旨在为您提供一份全面的3DGS安装与使用指南,汇总了从环境搭建到最终结果产出的
- redis学习笔记——不仅仅是存取数据
Everyday都不同
returnSourceexpire/delincr/lpush数据库分区redis
最近项目中用到比较多redis,感觉之前对它一直局限于get/set数据的层面。其实作为一个强大的NoSql数据库产品,如果好好利用它,会带来很多意想不到的效果。(因为我搞java,所以就从jedis的角度来补充一点东西吧。PS:不一定全,只是个人理解,不喜勿喷)
1、关于JedisPool.returnSource(Jedis jeids)
这个方法是从red
- SQL性能优化-持续更新中。。。。。。
atongyeye
oraclesql
1 通过ROWID访问表--索引
你可以采用基于ROWID的访问方式情况,提高访问表的效率, , ROWID包含了表中记录的物理位置信息..ORACLE采用索引(INDEX)实现了数据和存放数据的物理位置(ROWID)之间的联系. 通常索引提供了快速访问ROWID的方法,因此那些基于索引列的查询就可以得到性能上的提高.
2 共享SQL语句--相同的sql放入缓存
3 选择最有效率的表
- [JAVA语言]JAVA虚拟机对底层硬件的操控还不完善
comsci
JAVA虚拟机
如果我们用汇编语言编写一个直接读写CPU寄存器的代码段,然后利用这个代码段去控制被操作系统屏蔽的硬件资源,这对于JVM虚拟机显然是不合法的,对操作系统来讲,这样也是不合法的,但是如果是一个工程项目的确需要这样做,合同已经签了,我们又不能够这样做,怎么办呢? 那么一个精通汇编语言的那种X客,是否在这个时候就会发生某种至关重要的作用呢?
&n
- lvs- real
男人50
LVS
#!/bin/bash
#
# Script to start LVS DR real server.
# description: LVS DR real server
#
#. /etc/rc.d/init.d/functions
VIP=10.10.6.252
host='/bin/hostname'
case "$1" in
sta
- 生成公钥和私钥
oloz
DSA安全加密
package com.msserver.core.util;
import java.security.KeyPair;
import java.security.PrivateKey;
import java.security.PublicKey;
import java.security.SecureRandom;
public class SecurityUtil {
- UIView 中加入的cocos2d,背景透明
374016526
cocos2dglClearColor
要点是首先pixelFormat:kEAGLColorFormatRGBA8,必须有alpha层才能透明。然后view设置为透明glView.opaque = NO;[director setOpenGLView:glView];[self.viewController.view setBackgroundColor:[UIColor clearColor]];[self.viewControll
- mysql常用命令
香水浓
mysql
连接数据库
mysql -u troy -ptroy
备份表
mysqldump -u troy -ptroy mm_database mm_user_tbl > user.sql
恢复表(与恢复数据库命令相同)
mysql -u troy -ptroy mm_database < user.sql
备份数据库
mysqldump -u troy -ptroy
- 我的架构经验系列文章 - 后端架构 - 系统层面
agevs
JavaScriptjquerycsshtml5
系统层面:
高可用性
所谓高可用性也就是通过避免单独故障加上快速故障转移实现一旦某台物理服务器出现故障能实现故障快速恢复。一般来说,可以采用两种方式,如果可以做业务可以做负载均衡则通过负载均衡实现集群,然后针对每一台服务器进行监控,一旦发生故障则从集群中移除;如果业务只能有单点入口那么可以通过实现Standby机加上虚拟IP机制,实现Active机在出现故障之后虚拟IP转移到Standby的快速
- 利用ant进行远程tomcat部署
aijuans
tomcat
在javaEE项目中,需要将工程部署到远程服务器上,如果部署的频率比较高,手动部署的方式就比较麻烦,可以利用Ant工具实现快捷的部署。这篇博文详细介绍了ant配置的步骤(http://www.cnblogs.com/GloriousOnion/archive/2012/12/18/2822817.html),但是在tomcat7以上不适用,需要修改配置,具体如下:
1.配置tomcat的用户角色
- 获取复利总收入
baalwolf
获取
public static void main(String args[]){
int money=200;
int year=1;
double rate=0.1;
&
- eclipse.ini解释
BigBird2012
eclipse
大多数java开发者使用的都是eclipse,今天感兴趣去eclipse官网搜了一下eclipse.ini的配置,供大家参考,我会把关键的部分给大家用中文解释一下。还是推荐有问题不会直接搜谷歌,看官方文档,这样我们会知道问题的真面目是什么,对问题也有一个全面清晰的认识。
Overview
1、Eclipse.ini的作用
Eclipse startup is controlled by th
- AngularJS实现分页功能
bijian1013
JavaScriptAngularJS分页
对于大多数web应用来说显示项目列表是一种很常见的任务。通常情况下,我们的数据会比较多,无法很好地显示在单个页面中。在这种情况下,我们需要把数据以页的方式来展示,同时带有转到上一页和下一页的功能。既然在整个应用中这是一种很常见的需求,那么把这一功能抽象成一个通用的、可复用的分页(Paginator)服务是很有意义的。
&nbs
- [Maven学习笔记三]Maven archetype
bit1129
ArcheType
archetype的英文意思是原型,Maven archetype表示创建Maven模块的模版,比如创建web项目,创建Spring项目等等.
mvn archetype提供了一种命令行交互式创建Maven项目或者模块的方式,
mvn archetype
1.在LearnMaven-ch03目录下,执行命令mvn archetype:gener
- 【Java命令三】jps
bit1129
Java命令
jps很简单,用于显示当前运行的Java进程,也可以连接到远程服务器去查看
[hadoop@hadoop bin]$ jps -help
usage: jps [-help]
jps [-q] [-mlvV] [<hostid>]
Definitions:
<hostid>: <hostname>[:
- ZABBIX2.2 2.4 等各版本之间的兼容性
ronin47
zabbix更新很快,从2009年到现在已经更新多个版本,为了使用更多zabbix的新特性,随之而来的便是升级版本,zabbix版本兼容性是必须优先考虑的一点 客户端AGENT兼容
zabbix1.x到zabbix2.x的所有agent都兼容zabbix server2.4:如果你升级zabbix server,客户端是可以不做任何改变,除非你想使用agent的一些新特性。 Zabbix代理(p
- unity 3d还是cocos2dx哪个适合游戏?
brotherlamp
unity自学unity教程unity视频unity资料unity
unity 3d还是cocos2dx哪个适合游戏?
问:unity 3d还是cocos2dx哪个适合游戏?
答:首先目前来看unity视频教程因为是3d引擎,目前对2d支持并不完善,unity 3d 目前做2d普遍两种思路,一种是正交相机,3d画面2d视角,另一种是通过一些插件,动态创建mesh来绘制图形单元目前用的较多的是2d toolkit,ex2d,smooth moves,sm2,
- 百度笔试题:一个已经排序好的很大的数组,现在给它划分成m段,每段长度不定,段长最长为k,然后段内打乱顺序,请设计一个算法对其进行重新排序
bylijinnan
java算法面试百度招聘
import java.util.Arrays;
/**
* 最早是在陈利人老师的微博看到这道题:
* #面试题#An array with n elements which is K most sorted,就是每个element的初始位置和它最终的排序后的位置的距离不超过常数K
* 设计一个排序算法。It should be faster than O(n*lgn)。
- 获取checkbox复选框的值
chiangfai
checkbox
<title>CheckBox</title>
<script type = "text/javascript">
doGetVal: function doGetVal()
{
//var fruitName = document.getElementById("apple").value;//根据
- MySQLdb用户指南
chenchao051
mysqldb
原网页被墙,放这里备用。 MySQLdb User's Guide
Contents
Introduction
Installation
_mysql
MySQL C API translation
MySQL C API function mapping
Some _mysql examples
MySQLdb
- HIVE 窗口及分析函数
daizj
hive窗口函数分析函数
窗口函数应用场景:
(1)用于分区排序
(2)动态Group By
(3)Top N
(4)累计计算
(5)层次查询
一、分析函数
用于等级、百分点、n分片等。
函数 说明
RANK() &nbs
- PHP ZipArchive 实现压缩解压Zip文件
dcj3sjt126com
PHPzip
PHP ZipArchive 是PHP自带的扩展类,可以轻松实现ZIP文件的压缩和解压,使用前首先要确保PHP ZIP 扩展已经开启,具体开启方法就不说了,不同的平台开启PHP扩增的方法网上都有,如有疑问欢迎交流。这里整理一下常用的示例供参考。
一、解压缩zip文件 01 02 03 04 05 06 07 08 09 10 11
- 精彩英语贺词
dcj3sjt126com
英语
I'm always here
我会一直在这里支持你
&nb
- 基于Java注解的Spring的IoC功能
e200702084
javaspringbeanIOCOffice
- java模拟post请求
geeksun
java
一般API接收客户端(比如网页、APP或其他应用服务)的请求,但在测试时需要模拟来自外界的请求,经探索,使用HttpComponentshttpClient可模拟Post提交请求。 此处用HttpComponents的httpclient来完成使命。
import org.apache.http.HttpEntity ;
import org.apache.http.HttpRespon
- Swift语法之 ---- ?和!区别
hongtoushizi
?swift!
转载自: http://blog.sina.com.cn/s/blog_71715bf80102ux3v.html
Swift语言使用var定义变量,但和别的语言不同,Swift里不会自动给变量赋初始值,也就是说变量不会有默认值,所以要求使用变量之前必须要对其初始化。如果在使用变量之前不进行初始化就会报错:
var stringValue : String
//
- centos7安装jdk1.7
jisonami
jdkcentos
安装JDK1.7
步骤1、解压tar包在当前目录
[root@localhost usr]#tar -xzvf jdk-7u75-linux-x64.tar.gz
步骤2:配置环境变量
在etc/profile文件下添加
export JAVA_HOME=/usr/java/jdk1.7.0_75
export CLASSPATH=/usr/java/jdk1.7.0_75/lib
- 数据源架构模式之数据映射器
home198979
PHP架构数据映射器datamapper
前面分别介绍了数据源架构模式之表数据入口、数据源架构模式之行和数据入口数据源架构模式之活动记录,相较于这三种数据源架构模式,数据映射器显得更加“高大上”。
一、概念
数据映射器(Data Mapper):在保持对象和数据库(以及映射器本身)彼此独立的情况下,在二者之间移动数据的一个映射器层。概念永远都是抽象的,简单的说,数据映射器就是一个负责将数据映射到对象的类数据。
&nb
- 在Python中使用MYSQL
pda158
mysqlpython
缘由 近期在折腾一个小东西须要抓取网上的页面。然后进行解析。将结果放到
数据库中。 了解到
Python在这方面有优势,便选用之。 由于我有台
server上面安装有
mysql,自然使用之。在进行数据库的这个操作过程中遇到了不少问题,这里
记录一下,大家共勉。
python中mysql的调用
百度之后能够通过MySQLdb进行数据库操作。
- 单例模式
hxl1988_0311
java单例设计模式单件
package com.sosop.designpattern.singleton;
/*
* 单件模式:保证一个类必须只有一个实例,并提供全局的访问点
*
* 所以单例模式必须有私有的构造器,没有私有构造器根本不用谈单件
*
* 必须考虑到并发情况下创建了多个实例对象
* */
/**
* 虽然有锁,但是只在第一次创建对象的时候加锁,并发时不会存在效率
- 27种迹象显示你应该辞掉程序员的工作
vipshichg
工作
1、你仍然在等待老板在2010年答应的要提拔你的暗示。 2、你的上级近10年没有开发过任何代码。 3、老板假装懂你说的这些技术,但实际上他完全不知道你在说什么。 4、你干完的项目6个月后才部署到现场服务器上。 5、时不时的,老板在检查你刚刚完成的工作时,要求按新想法重新开发。 6、而最终这个软件只有12个用户。 7、时间全浪费在办公室政治中,而不是用在开发好的软件上。 8、部署前5分钟才开始测试。