- [大模型]离线更新本地ollama模型,拷贝ollama模型到离线电脑中安装使用deepseekR1模型更新增量更新update models
工作不忙
大模型gptpython开源软件linuxdocker
情况说明因为我最近在离线的机器上部署了一个ollama+open—webui的方式,运行在公司电脑。过完年后,爆火的deepseekR1已经有模型下载了,于是就有了今天这个操作。之前是用的deepseekv2,也该更新了…方法步骤拉取ollama官网仓库中deepseekR1模型如果您的电脑能联网,仅需要执行一条命令即可,不需要后续的其他操作,可能需要重启ollama。ollamapulldeep
- YUV视频数据类型
香草加冰鸭
OpenGL渲染音视频
YUV视频数据类型1.概述2.YUV420P2.1YU122.2YV123.YUV420SP3.1NV213.2NV124.YUV和RGB转换1.概述YUV视频数据是根据一个亮度Y和两个色度UV来定义的颜色空间。常见的YUV格式有I420,NV12,YV12。YUV有三种采样模式,其中:YUV4:4:4采样,每一个Y对应一组UV分量,一个YUV占8+8+8=24bits3个字节。YUV4:2:2采
- keepalived+timescaladb主备切换高可用方案
handsomestWei
数据库keepalivedtimescaladbpostgresql数据库高可用
keepalived+timescaladb主备切换高可用方案环境和组件依赖ubuntu22.04,docker引擎keepalivedv2.2.4timescaledbdocker镜像wjy2020/timescaledb-repmgr:pg14.15-ts2.17.2,镜像使用参考方案思路在双机分别部署这两个组件,keepalived定时检测timescaladb数据库的主备状态,当数据库状态
- cv2小练习
#岩王爷
pyqt音视频
基础概念帧率是指在单位时间内,显示的图像帧数的数量。它是衡量视频或动画流畅度的一个重要指标。帧率的单位通常是每秒帧数(FramesPerSecond,简称FPS)。在数字视频和计算机图形领域,帧率是决定视频播放质量和流畅度的关键因素。一般来说,当帧率较高时,视频播放会更加流畅,动画也会更加细腻和逼真;而当帧率较低时,视频播放可能会出现不流畅、卡顿或抖动的现象。虽然帧率本身不能直接控制倍速播放,但倍
- DeepSeek-V2 论文解读:混合专家架构的新突破
进一步有进一步的欢喜
DeepSeek-V2大模型MoE混合专家架构
论文链接:DeepSeek-V2:AStrong,Economical,andEfficientMixture-of-ExpertsLanguageModel目录一、引言二、模型架构(一)多头部潜在注意力(MLA):重塑推理效率(二)DeepSeekMoE:经济高效的训练架构三、预训练(Pre-Training):夯实模型基础(一)实验设置(二)评估四、对齐(Alignment):优化模型表现(一
- DeepSeek-V2模型版本更新:探索高效经济的多专家混合架构
姜葵烽
DeepSeek-V2模型版本更新:探索高效经济的多专家混合架构DeepSeek-V2项目地址:https://gitcode.com/hf_mirrors/ai-gitcode/DeepSeek-V2在人工智能模型的发展进程中,每一次版本更新都是对前一次成果的深化与完善。今天,我们将详细介绍DeepSeek-V2模型的新版本特性,以及它如何通过创新的架构设计,实现了在性能和成本之间的最佳平衡。新
- python 摄像头 异常,opencvpython摄像头读取错误
weixin_39580564
python摄像头异常
我有个错误VIDEOIOERROR:V4L2:PixelformatofincomingimageisunsupportedbyOpenCVUnabletostopthestream:DeviceorresourcebusyVIDEOIOERROR:V4L:can'topencamerabyindex0尝试运行代码时importtimeimportdatetimeimportcv2importbo
- python+OpenCv笔记(十一):中值滤波
ReadyGo!!!
OpenCV(Python)opencvpython计算机视觉
中值滤波:原理:中值滤波是一种典型的非线性滤波技术,基本思想是用像素点邻域灰度值的中值来代替该像素点的灰度值。应用:中值滤波对椒盐噪声来说尤其有用,因为它不依赖于邻域内那些与典型值差别很大的值。OpenCvAPI:cv2.medianBlur(src,ksize)参数:src:输入的图像ksize:卷积核的大小代码编写:importnumpyasnpimportcv2ascvimportrando
- 学习系列二:常用目标检测的格式转换脚本文件txt,json等
小啊磊_Vv
目标检测YOLO人工智能计算机视觉json
常用目标检测的格式转换脚本文件txt,json等文章目录常用目标检测的格式转换脚本文件txt,json等前言一、json格式转yolo的txt格式二、yolov8的关键点labelme打的标签json格式转可训练的txt格式三、yolo的目标检测txt格式转coco数据集标签的json格式四、xml格式转yolo数据集标签的txt格式五、根据yolo的目标检测训练的最好权重推理图片六、根据yolo
- 【目标检测】YOLO格式数据集txt标注转换为COCO格式JSON
ericdiii
目标检测目标检测YOLOjson
YOLO格式数据集:images|--train|--test|--vallabels|--train|--test|--val代码:importosimportjsonfromPILimportImage#设置数据集路径dataset_path="path/to/your/dataset"images_path=os.path.join(dataset_path,"images")labels_
- 目标检测:yolo格式txt转换成COCO格式json
詹姆斯德
格式转换目标检测YOLOjson
修改对应文件路径即可,其他根据txt或者希望生成的json做轻微调整#-*-coding:utf-8-*-importosimportjsonfromPILimportImagecoco_format_save_path="/home/admin1/data/LVIS"#要生成的标准coco格式标签所在文件夹yolo_format_classes_path="/home/admin1/data/L
- YOLOv11-ultralytics-8.3.67部分代码阅读笔记-ops.py
红色的山茶花
YOLO笔记深度学习
ops.pyultralytics\utils\ops.py目录ops.py1.所需的库和模块2.classProfile(contextlib.ContextDecorator):3.defsegment2box(segment,width=640,height=640):4.defscale_boxes(img1_shape,boxes,img0_shape,ratio_pad=None,pa
- 基于深度学习YOLOv5的海洋动物检测系统
深度学习&目标检测实战项目
深度学习YOLO目标跟踪人工智能目标检测计算机视觉
1.引言随着人工智能技术的快速发展,深度学习在图像处理领域的应用逐渐展现出强大的能力,尤其是在目标检测任务上。YOLO(YouOnlyLookOnce)系列模型作为一种高效的目标检测算法,以其实时性和高精度在许多领域得到了广泛应用。海洋动物的检测任务也因此受益,借助深度学习模型,我们可以实时、自动地检测海洋中的动物,有助于海洋生态研究、环境保护以及水下监测等多个领域。本文将详细介绍如何基于YOLO
- 基于YOLOv5、YOLOv8和YOLOv10的车站行李监控系统:深度学习应用与实现
深度学习&目标检测实战项目
YOLO深度学习人工智能目标检测目标跟踪
引言在现代车站,行李监控是一项至关重要的安全任务。随着交通安全要求的不断提高,尤其是在车站等人流密集的场所,及时检测和识别行李不仅有助于防止行李遗失或误取,还能有效地减少潜在的安全威胁。传统的人工检查方法已经无法满足快速响应和高精度的需求,而基于深度学习的目标检测技术,特别是YOLO(YouOnlyLookOnce)系列算法,成为了高效解决此类问题的理想选择。YOLO系列算法(包括YOLOv5、Y
- 【ai】李沐 动手深度学学v2 环境安装:anaconda3、pycharm、d2
等风来不如迎风去
AI入门与实战人工智能
cuda-toolkitcuda_12.5.0_windows_network.exe官方课程网站第二版资源下载release版本pycharm版本李沐【动手学深度学习v2PyTorch版】课程笔记CUDA选择11,实际下载12.5.0
- 在树莓派5上安装opencv的时候出现报错ImportError: numpy.core.multiarray failed to import
听说你还在搞什么原创~
opencv人工智能numpy
>>>importcv2AmodulethatwascompiledusingNumPy1.xcannotberuninNumPy2.0.2asitmaycrash.Tosupportboth1.xand2.xversionsofNumPy,modulesmustbecompiledwithNumPy2.0.Somemodulemayneedtorebuildinsteade.g.with'pyb
- python选取图像的长和宽的最小值,把图像缩放成长和宽中最小的值
zhangxiangweide
python
importglobasgbimportcv2img_path=gb.glob("G:\\ZXWwork\\PYZ\\*\\*.jpg")forpathinimg_path: img=cv2.imread(path) a=img.shape height=a[0] width=a[1] ##true=min(height,width) res=cv2.resize(img,(24,24
- 使用yolo11x进行物体分类
欣然~
分类人工智能深度学习
利用yolo11x进行物体识别一、物品分类代码说明模型加载:加载yolo11x.pt模型,如果这个模型在物体分类上表现不佳,可以考虑使用像yolov8n.pt这类通用的预训练模型。摄像头设置:打开电脑摄像头并将帧率设置为10fps,以此减轻处理负担。FPS计算:借助time库计算每帧的处理时间,进而得到FPS值,并在画面左上角显示。物体检测与分类:运用model(frame,conf=0.5,ve
- YOLOv8改进策略【Neck】| NeurIPS 2023 融合GOLD-YOLO颈部结构,强化小目标检测能力
Limiiiing
YOLOv8改进专栏YOLO目标检测深度学习计算机视觉
一、本文介绍本文主要利用GOLD-YOLO中的颈部结构优化YOLOv8的网络模型。GOLD-YOLO颈部结构中的GD机制借鉴了全局信息融合的理念,通过独特的模块设计,在不显著增加延迟的情况下,高效融合不同层级的特征信息。将其应用于YOLOv8的改进过程中,能够使模型更有效地整合多尺度特征,减少信息损失,强化对不同大小目标物体的特征表达,从而提升模型在复杂场景下对目标物体的检测精度与定位准确性。专栏
- Pointnet++改进即插即用系列:全网首发ACConv2d|即插即用,提升特征提取模块性能
AICurator
Pointnet++改进专栏python深度学习pytorch点云pointnet++
简介:1.该教程提供大量的首发改进的方式,降低上手难度,多种结构改进,助力寻找创新点!2.本篇文章对Pointnet++特征提取模块进行改进,加入ACConv2d,提升性能。3.专栏持续更新,紧随最新的研究内容。目录1.理论介绍2.修改步骤2.1步骤一2.2步骤二2.3步骤三1.理论介绍由于在给定的应用环境中设计合适的卷积神经网络(CNN)架构通常需要大量的人工工作或大量的GPU时间,研究社区正在
- 揭幕 DeepSeek-V2.5-1210:革新人工智能能力
吴脑的键客
人工智能人工智能搜索引擎
简介在人工智能领域,创新和卓越是不懈的追求。作为人工智能研究领域的先驱,DeepSeek成功地将其旗舰模型DeepSeek-V2.5升级为全新改进的DeepSeek-V2.5-1210。这一尖端语言模型在各个领域都取得了巨大进步,巩固了其作为人工智能领域开拓者的地位。技术背景DeepSeek-V2.5-1210在DeepSeekV2系列的基础上进行了微调,利用后训练迭代提升了其在数学、编程、写作和
- chmlfrp第三方启动器客户端
boring_student
pythonui
CUL-CHMLFRP启动器基于v2api开发的chmlfrpui版本的第三方客户端CUL原名CHMLFRP_UICUL顾名思义为CHMLFRP-UI-Launcher下载地址:https://cul.lanzoul.com/b00pzv3oyj密码:ff50下载解压运行即可(仅支持win10以上版本),如有bug请提出谢谢!有bug请投稿至
[email protected]谢谢肯定没bu
- Cartesi 生态系统动态 #1 (2025年)
Black_mario
区块链
技术新版CartesiMachine即将发布,带来一些激动人心的新功能。通过最新优化,原生运行变得更简单且速度提升两倍。节点方面,稳定版V2已正式推出。在Espresso的支持下,它将为即将推出的测试网中的DrawingCanvas提供支持。Cartesi与EigenLayer携手合作第三届实验周,在Cartesi基于Linux的协处理器与EigenLayer的重质押协议交汇处,展开为期一周的新用
- OpenCV识别电脑摄像头中的圆形物体
欣然~
opencv人工智能计算机视觉
思路步骤初始化摄像头:使用cv2.VideoCapture打开电脑摄像头。处理每一帧图像:对摄像头捕获的每一帧图像进行处理,包括灰度化、高斯模糊、霍夫圆变换等操作。绘制圆形和圆心:如果检测到圆形,使用cv2.circle函数用黄线绘制圆形边缘,用红线绘制圆心。显示结果:使用cv2.imshow显示处理后的图像,并通过cv2.waitKey等待按键事件。代码解释导入必要的库:导入cv2和numpy库
- Python命名规范
Andy_2259
Pythonpython开发语言后端
原文地址1、包名:全部小写字母,中间可以由点分隔开,不推荐使用下划线。作为命名空间,包名应该具有唯一性,推荐采用公司或者组织域名的倒置,如com.apple.quicktime.v2。2、模块名:全部小写字母,如果是多个单词构成,可以用下划线隔开,如dummy_threading。3、类名:总是使用首字母大写单词串。如MyClass。内部类可以使用额外的前导下划线。类总是使用驼峰格式命名,即所有单
- 点大商城V2-2.6.6源码全开源uniapp +搭建教程
kaui52066
kaui52066精品源码小程序uni-appphp前端源码下载
一.介绍点大商城V2独立开源版本,版本更新至2.6.6,系统支持多端,前端为UNiapp,多端编译。二.搭建环境:系统环境:CentOS、运行环境:宝塔Linux网站环境:Nginx1.21+MySQL5.7.46+PHP-74常见插件:fileinfo;redis修复已经问题。优化前端主包大小优化随行付支付小程序同步发货修复预约服务订单派单修复会员升级支付费用驳回退费问题修复批量发货顺丰和中通物
- 基于深度学习YOLOv5的火焰检测系统
深度学习&目标检测实战项目
深度学习YOLO人工智能目标跟踪目标检测
引言随着智能监控技术和深度学习的不断发展,火灾检测系统已经成为了自动化消防领域中的重要应用之一。传统的火灾报警系统往往依赖于温度传感器或烟雾探测器,但这些方法常常容易受到环境变化的影响,如高温、湿度等因素,这可能导致误报或漏报的情况。近年来,基于视觉的火灾检测系统,特别是使用深度学习进行图像处理和火焰识别,逐渐成为一种更为可靠的解决方案。本文将介绍如何基于深度学习和YOLOv5模型,构建一个火焰检
- YOLOv8改进策略【Neck】| TPAMI 2024 FreqFusion 频域感知特征融合模块 解决密集图像预测问题
Limiiiing
YOLOv8改进专栏YOLO深度学习计算机视觉目标检测
一、本文介绍本文主要利用FreqFusion结构改进YOLOv8的目标检测网络模型。FreqFusion结构针对传统特征融合在密集图像预测中存在的问题,创新性地引入自适应低通滤波器生成器、偏移量生成器和自适应高通滤波器生成器。将FreqFusion应用于YOLOv8的改进过程中,能够使模型在处理复杂场景图像时,更精准地聚焦目标物体边界,减少背景噪声干扰,显著强化目标物体边界特征表达,进而提升模型在
- DeepSeek-v3笔记(1)
蒸土豆的技术细节
笔记
v3链接直接从第二章Architecture开始2.1BasicArchitecture基本方法就是v2的那一套,仍然是moe架构,采用MLA降显存,常驻专家和路由专家的混合使用。与v2不同的是,这里用了更加强力的路由平衡算法,叫Auxiliary-Loss-FreeLoadBalancing。它主要解决不同routeexpert训练不平衡问题,思路就是谁训得少了就把谁被选中的概率抬高。至于MLA
- DeepSeek-V2 实战教程:从入门到精通
奚笛漫
DeepSeek-V2实战教程:从入门到精通DeepSeek-V2-Chat项目地址:https://gitcode.com/mirrors/deepseek-ai/DeepSeek-V2-Chat引言欢迎来到DeepSeek-V2实战教程!在这个教程中,我们将带你从入门到精通,全面掌握DeepSeek-V2模型的使用。无论你是初学者还是有一定基础的用户,本教程都将为你提供有价值的信息和技巧。我们
- ASM系列四 利用Method 组件动态注入方法逻辑
lijingyao8206
字节码技术jvmAOP动态代理ASM
这篇继续结合例子来深入了解下Method组件动态变更方法字节码的实现。通过前面一篇,知道ClassVisitor 的visitMethod()方法可以返回一个MethodVisitor的实例。那么我们也基本可以知道,同ClassVisitor改变类成员一样,MethodVIsistor如果需要改变方法成员,注入逻辑,也可以
- java编程思想 --内部类
百合不是茶
java内部类匿名内部类
内部类;了解外部类 并能与之通信 内部类写出来的代码更加整洁与优雅
1,内部类的创建 内部类是创建在类中的
package com.wj.InsideClass;
/*
* 内部类的创建
*/
public class CreateInsideClass {
public CreateInsideClass(
- web.xml报错
crabdave
web.xml
web.xml报错
The content of element type "web-app" must match "(icon?,display-
name?,description?,distributable?,context-param*,filter*,filter-mapping*,listener*,servlet*,s
- 泛型类的自定义
麦田的设计者
javaandroid泛型
为什么要定义泛型类,当类中要操作的引用数据类型不确定的时候。
采用泛型类,完成扩展。
例如有一个学生类
Student{
Student(){
System.out.println("I'm a student.....");
}
}
有一个老师类
- CSS清除浮动的4中方法
IT独行者
JavaScriptUIcss
清除浮动这个问题,做前端的应该再熟悉不过了,咱是个新人,所以还是记个笔记,做个积累,努力学习向大神靠近。CSS清除浮动的方法网上一搜,大概有N多种,用过几种,说下个人感受。
1、结尾处加空div标签 clear:both 1 2 3 4
.div
1
{
background
:
#000080
;
border
:
1px
s
- Cygwin使用windows的jdk 配置方法
_wy_
jdkwindowscygwin
1.[vim /etc/profile]
JAVA_HOME="/cgydrive/d/Java/jdk1.6.0_43" (windows下jdk路径为D:\Java\jdk1.6.0_43)
PATH="$JAVA_HOME/bin:${PATH}"
CLAS
- linux下安装maven
无量
mavenlinux安装
Linux下安装maven(转) 1.首先到Maven官网
下载安装文件,目前最新版本为3.0.3,下载文件为
apache-maven-3.0.3-bin.tar.gz,下载可以使用wget命令;
2.进入下载文件夹,找到下载的文件,运行如下命令解压
tar -xvf apache-maven-2.2.1-bin.tar.gz
解压后的文件夹
- tomcat的https 配置,syslog-ng配置
aichenglong
tomcathttp跳转到httpssyslong-ng配置syslog配置
1) tomcat配置https,以及http自动跳转到https的配置
1)TOMCAT_HOME目录下生成密钥(keytool是jdk中的命令)
keytool -genkey -alias tomcat -keyalg RSA -keypass changeit -storepass changeit
- 关于领号活动总结
alafqq
活动
关于某彩票活动的总结
具体需求,每个用户进活动页面,领取一个号码,1000中的一个;
活动要求
1,随机性,一定要有随机性;
2,最少中奖概率,如果注数为3200注,则最多中4注
3,效率问题,(不能每个人来都产生一个随机数,这样效率不高);
4,支持断电(仍然从下一个开始),重启服务;(存数据库有点大材小用,因此不能存放在数据库)
解决方案
1,事先产生随机数1000个,并打
- java数据结构 冒泡排序的遍历与排序
百合不是茶
java
java的冒泡排序是一种简单的排序规则
冒泡排序的原理:
比较两个相邻的数,首先将最大的排在第一个,第二次比较第二个 ,此后一样;
针对所有的元素重复以上的步骤,除了最后一个
例题;将int array[]
- JS检查输入框输入的是否是数字的一种校验方法
bijian1013
js
如下是JS检查输入框输入的是否是数字的一种校验方法:
<form method=post target="_blank">
数字:<input type="text" name=num onkeypress="checkNum(this.form)"><br>
</form>
- Test注解的两个属性:expected和timeout
bijian1013
javaJUnitexpectedtimeout
JUnit4:Test文档中的解释:
The Test annotation supports two optional parameters.
The first, expected, declares that a test method should throw an exception.
If it doesn't throw an exception or if it
- [Gson二]继承关系的POJO的反序列化
bit1129
POJO
父类
package inheritance.test2;
import java.util.Map;
public class Model {
private String field1;
private String field2;
private Map<String, String> infoMap
- 【Spark八十四】Spark零碎知识点记录
bit1129
spark
1. ShuffleMapTask的shuffle数据在什么地方记录到MapOutputTracker中的
ShuffleMapTask的runTask方法负责写数据到shuffle map文件中。当任务执行完成成功,DAGScheduler会收到通知,在DAGScheduler的handleTaskCompletion方法中完成记录到MapOutputTracker中
- WAS各种脚本作用大全
ronin47
WAS 脚本
http://www.ibm.com/developerworks/cn/websphere/library/samples/SampleScripts.html
无意中,在WAS官网上发现的各种脚本作用,感觉很有作用,先与各位分享一下
获取下载
这些示例 jacl 和 Jython 脚本可用于在 WebSphere Application Server 的不同版本中自
- java-12.求 1+2+3+..n不能使用乘除法、 for 、 while 、 if 、 else 、 switch 、 case 等关键字以及条件判断语句
bylijinnan
switch
借鉴网上的思路,用java实现:
public class NoIfWhile {
/**
* @param args
*
* find x=1+2+3+....n
*/
public static void main(String[] args) {
int n=10;
int re=find(n);
System.o
- Netty源码学习-ObjectEncoder和ObjectDecoder
bylijinnan
javanetty
Netty中传递对象的思路很直观:
Netty中数据的传递是基于ChannelBuffer(也就是byte[]);
那把对象序列化为字节流,就可以在Netty中传递对象了
相应的从ChannelBuffer恢复对象,就是反序列化的过程
Netty已经封装好ObjectEncoder和ObjectDecoder
先看ObjectEncoder
ObjectEncoder是往外发送
- spring 定时任务中cronExpression表达式含义
chicony
cronExpression
一个cron表达式有6个必选的元素和一个可选的元素,各个元素之间是以空格分隔的,从左至右,这些元素的含义如下表所示:
代表含义 是否必须 允许的取值范围 &nb
- Nutz配置Jndi
ctrain
JNDI
1、使用JNDI获取指定资源:
var ioc = {
dao : {
type :"org.nutz.dao.impl.NutDao",
args : [ {jndi :"jdbc/dataSource"} ]
}
}
以上方法,仅需要在容器中配置好数据源,注入到NutDao即可.
- 解决 /bin/sh^M: bad interpreter: No such file or directory
daizj
shell
在Linux中执行.sh脚本,异常/bin/sh^M: bad interpreter: No such file or directory。
分析:这是不同系统编码格式引起的:在windows系统中编辑的.sh文件可能有不可见字符,所以在Linux系统下执行会报以上异常信息。
解决:
1)在windows下转换:
利用一些编辑器如UltraEdit或EditPlus等工具
- [转]for 循环为何可恨?
dcj3sjt126com
程序员读书
Java的闭包(Closure)特征最近成为了一个热门话题。 一些精英正在起草一份议案,要在Java将来的版本中加入闭包特征。 然而,提议中的闭包语法以及语言上的这种扩充受到了众多Java程序员的猛烈抨击。
不久前,出版过数十本编程书籍的大作家Elliotte Rusty Harold发表了对Java中闭包的价值的质疑。 尤其是他问道“for 循环为何可恨?”[http://ju
- Android实用小技巧
dcj3sjt126com
android
1、去掉所有Activity界面的标题栏
修改AndroidManifest.xml 在application 标签中添加android:theme="@android:style/Theme.NoTitleBar"
2、去掉所有Activity界面的TitleBar 和StatusBar
修改AndroidManifes
- Oracle 复习笔记之序列
eksliang
Oracle 序列sequenceOracle sequence
转载请出自出处:http://eksliang.iteye.com/blog/2098859
1.序列的作用
序列是用于生成唯一、连续序号的对象
一般用序列来充当数据库表的主键值
2.创建序列语法如下:
create sequence s_emp
start with 1 --开始值
increment by 1 --増长值
maxval
- 有“品”的程序员
gongmeitao
工作
完美程序员的10种品质
完美程序员的每种品质都有一个范围,这个范围取决于具体的问题和背景。没有能解决所有问题的
完美程序员(至少在我们这个星球上),并且对于特定问题,完美程序员应该具有以下品质:
1. 才智非凡- 能够理解问题、能够用清晰可读的代码翻译并表达想法、善于分析并且逻辑思维能力强
(范围:用简单方式解决复杂问题)
- 使用KeleyiSQLHelper类进行分页查询
hvt
sql.netC#asp.nethovertree
本文适用于sql server单主键表或者视图进行分页查询,支持多字段排序。KeleyiSQLHelper类的最新代码请到http://hovertree.codeplex.com/SourceControl/latest下载整个解决方案源代码查看。或者直接在线查看类的代码:http://hovertree.codeplex.com/SourceControl/latest#HoverTree.D
- SVG 教程 (三)圆形,椭圆,直线
天梯梦
svg
SVG <circle> SVG 圆形 - <circle>
<circle> 标签可用来创建一个圆:
下面是SVG代码:
<svg xmlns="http://www.w3.org/2000/svg" version="1.1">
<circle cx="100" c
- 链表栈
luyulong
java数据结构
public class Node {
private Object object;
private Node next;
public Node() {
this.next = null;
this.object = null;
}
public Object getObject() {
return object;
}
public
- 基础数据结构和算法十:2-3 search tree
sunwinner
Algorithm2-3 search tree
Binary search tree works well for a wide variety of applications, but they have poor worst-case performance. Now we introduce a type of binary search tree where costs are guaranteed to be loga
- spring配置定时任务
stunizhengjia
springtimer
最近因工作的需要,用到了spring的定时任务的功能,觉得spring还是很智能化的,只需要配置一下配置文件就可以了,在此记录一下,以便以后用到:
//------------------------定时任务调用的方法------------------------------
/**
* 存储过程定时器
*/
publi
- ITeye 8月技术图书有奖试读获奖名单公布
ITeye管理员
活动
ITeye携手博文视点举办的8月技术图书有奖试读活动已圆满结束,非常感谢广大用户对本次活动的关注与参与。
8月试读活动回顾:
http://webmaster.iteye.com/blog/2102830
本次技术图书试读活动的优秀奖获奖名单及相应作品如下(优秀文章有很多,但名额有限,没获奖并不代表不优秀):
《跨终端Web》
gleams:http