我前段时间在完成一个公司业务时,遇到了一个这样的需求:将HDFS上按每天每小时存储的数据进行数据预处理,然后对应按天存储在HDFS........由此可得,MapReduce的输入路径是:
/user/data/yyyy/MM/dd/HH/
/user/out/yyyy/MM/dd/
在设计代码的时候,发现FileInputFormat.addInputPath()难堪此大任,于是,我就通过APIs等资料,找到了FileInputFormat.setInputPaths()的解决方案。不过,我将在下面对MapReduce的输入/输出进行总结和介绍。
FileInputFormat.addInputPath()是我们最常用的设置MapReduce输入路径的方法了。其实,FileInputFormat有两个这样的方法:
static void addInputPath(Job job, Path path)
static void addInputPaths(Job job, String commaSeperatedPaths)
FileInputFormat.addInputPath(job, new Path(args[0]));
FileInputFormat.addInputPath(job, new Path(args[1]));
FileInputFormat.addInputPath(job, new Path(args[2]));
String paths = strings[0] + "," + strings[1];
FileInputFormat.addInputPaths(job, paths);
MultipleInputs的addInputPath有两种定义方式:
static void addInputPath(Job job, Path path, Class extends InputFormat> inputFormatClass)
static void addInputPath(Job job, Path path, Class extends InputFormat> inputFormatClass, Class extends Mapper> mapperClass)
MultipleInputs.addInputPath(job, new Path(args[0]), TextInputFormat.class);
MultipleInputs.addInputPath(job, new Path(args[1]), TextInputFormat.class);
后者可以对不同的路径指定不同的Mapper,故可以指定不同Mapper处理不同类型的文件。
MultipleInputs.addInputPath(job, new Path(args[0]), TextInputFormat.class,
MultiPathMR.MultiMap1.class);
MultipleInputs.addInputPath(job, new Path(args[1]), TextInputFormat.class,
MultiPathMR.MultiMap2.class);
FileInputFormat有三个设置路径的方法:
static void setInputPathFilter(Job job, Class extends PathFilter> filter)
static void setInputPaths(Job job, Path... inputPaths)
static void setInputPaths(Job job, String commaSeparatedPaths)
通配符 |
描述 |
* |
匹配0个或多个字符 |
? |
匹配单个字符 |
[ab] |
匹配集合{a, b}中的单个字符 |
[^ab] |
匹配不在集合{a, b}中的单个字符 |
[a-b] |
匹配闭区间[a, b]中的单个字符,其顺序按字典字母排序 |
[^a-b] |
匹配不在闭区间[a, b]中的单个字符 |
{a, b} |
匹配a表达式或b表达式 |
\c |
匹配元字符c |
/user/yyyy/mm/dd/*/
FileInputFormat.setInputPaths(job, new Path(strings[0]));
Path[] paths = {new Path(strings[0]), new Path(strings[1])};
FileInputFormat.setInputPaths(job, paths);
String paths = strings[0] + "," + strings[1];
FileInputFormat.setInputPaths(job, paths);
void write(KEYOUT key, VALUEOUT value, String baseOutputPath)
void write(String namedOutput, K key, V value)
void write(String namedOutput, K key, V value, String baseOutputPath)
hello,world
hello,hadoop
hello,spark
public class MultiOutMR {
public static class MultiOutMapper extends Mapper
public class Driver extends Configured implements Tool {
@Override
public int run(String[] strings) throws Exception {
Configuration conf = getConf();
conf.set("type", strings[2]);
Job job = new Job(conf, "Multiple Output");
job.setJarByClass(Driver.class);
job.setMapperClass(MultiOutMR.MultiOutMapper.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(IntWritable.class);
job.setReducerClass(MultiOutMR.MultiOutReducer.class);
if(!strings[2].equalsIgnoreCase("baseOutputPath")){
MultipleOutputs.addNamedOutput(job, "hello", TextOutputFormat.class,
Text.class, LongWritable.class);
MultipleOutputs.addNamedOutput(job, "IT", TextOutputFormat.class,
Text.class, LongWritable.class);
}
FileInputFormat.addInputPath(job, new Path(strings[0]));
FileOutputFormat.setOutputPath(job, new Path(strings[1]));
return job.waitForCompletion(true) ? 0 : 1;
}
public static void main(String[] args)throws Exception{
Configuration conf = new Configuration();
String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
if(otherArgs.length != 3){
System.err.println("Usage:
参考文献:
http://blog.zaloni.com/using-globs-and-wildcards-with-mapreduce