深度学习常用的python库

1. NumPy:
NumPy is the fundamental package for scientific computing with Python. It contains among other things:
a powerful N-dimensional array object;
sophisticated (broadcasting) functions;
tools for integrating C/C++ and Fortran code;
useful linear algebra, Fourier transform, and random number capabilities.




2. pandas:
pandas is an open source, BSD-licensed library providing high-performance, easy-to-use data structures and data analysis tools for the Python programming language.
pandas是基于NumPy构建的,比NumPy的使用更简单。



2.1 read_csv: 从文件中加载带分隔符的数据,默认分隔符为",";
columns = ['user','activity','timestamp', 'x-axis', 'y-axis', 'z-axis']
df = pd.read_csv('data/WISDM_ar_v1.1_raw.txt', header = None, names = columns)

按需求取其中的几列等。data[['a','b', 'c']]其中data是DataFrame类型,而'a' 是列的名字


2.2 很简单的把数据图像划展现:横坐标activity, 纵坐标counts
df['activity'].value_counts().plot(kind='bar', title='Training examples by activity type');


3. pickle:
用于模型的保存和读取
Python中可以使用 pickle 模块将对象转化为文件保存在磁盘上,在需要的时候再读取并还原:
pickle.dump(obj, file[, protocol])
pickle.load()


4. matplotlib.pyplot
用于图形化显示


5. SciPy:
SciPy (pronounced "Sigh Pie"[2]) is an open source Python library used for scientific computing and technical computing.
Python有一个很好的统计推断包。那就是scipy里面的stats。
Scipy的stats模块包含了多种概率分布的随机变量,随机变量分为连续的和离散的两种。


6. seaborn:
Seaborn is a Python visualization library based on matplotlib. It provides a high-level interface for drawing attractive statistical graphics.


7. PyLab:
PyLab is actually embedded inside Matplotlib and provides a Matlab®-like experience for the user. It imports portions of Matplotlib and NumPy. Many examples on the web use it as a simpler Matlab®-like experience, but it is not recommended anymore as it doesn't nurture understanding of Python itself, thus leaving you in a limited environment.


8.sklearn
SciKit-Learn 又称sklearn, 是众多机器学习模块中比较优秀的. 因为他汇集了太多太多机器学习的方法. 比如各种监督学习, 非监督学习, 半监督学习的方法. 
Scikit-learn (formerly scikits.learn) is a free software machine learning library for the Python programming language. It features various classification, regression and clustering algorithms including support vector machines, random forests, gradient boosting, k-means and DBSCAN, and is designed to interoperate with the Python numerical and scientific libraries NumPy and SciPy.


from sklearn import metrics
from sklearn.model_selection import train_test_split


9. tensorflow
tensorflow框架

你可能感兴趣的:(人工智能)