《二》spark并行度 调优

并行度:其实就是指的是,Spark作业中,各个stagetask数量,也就代表了Spark作业的在各个阶段(stage)的并行度。

 

如果不调节并行度,导致并行度过低,会怎么样?

 

假设,现在已经在spark-submit脚本里面,给我们的spark作业分配了足够多的资源,比如50executor,每个executor10G内存,每个executor3cpu core。基本已经达到了集群或者yarn队列的资源上限。

 

task没有设置,或者设置的很少,比如就设置了,100task50executor,每个executor3cpu core,也就是说,你的Application任何一个stage运行的时候,都有总数在150cpu core,可以并行运行。但是你现在,只有100task,平均分配一下,每个executor分配到2taskok,那么同时在运行的task,只有100个,每个executor只会并行运行2task。每个executor剩下的一个cpu core,就浪费掉了。

 

你的资源虽然分配足够了,但是问题是,并行度没有与资源相匹配,导致你分配下去的资源都浪费掉了。

 

合理的并行度的设置,应该是要设置的足够大,大到可以完全合理的利用你的集群资源;比如上面的例子,总共集群有150cpu core,可以并行运行150task。那么就应该将你的Application的并行度,至少设置成150,才能完全有效的利用你的集群资源,让150task,并行执行;而且task增加到150个以后,即可以同时并行运行,还可以让每个task要处理的数据量变少;比如总共150G的数据要处理,如果是100task,每个task计算1.5G的数据;现在增加到150task,可以并行运行,而且每个task主要处理1G的数据就可以。

 

很简单的道理,只要合理设置并行度,就可以完全充分利用你的集群计算资源,并且减少每个task要处理的数据量,最终,就是提升你的整个Spark作业的性能和运行速度。

 

1task数量,至少设置成与Spark application的总cpu core数量相同(最理想情况,比如总共150cpu core,分配了150task,一起运行,差不多同一时间运行完毕)

 

2、官方是推荐,task数量,设置成spark applicationcpu core数量的2~3倍,比如150cpu core,基本要设置task数量为300~500

 

实际情况,与理想情况不同的,有些task会运行的快一点,比如50s就完了,有些task,可能会慢一点,要1分半才运行完,所以如果你的task数量,刚好设置的跟cpu core数量相同,可能还是会导致资源的浪费,因为,比如150task10个先运行完了,剩余140个还在运行,但是这个时候,有10cpu core就空闲出来了,就导致了浪费。那如果task数量设置成cpu core总数的2~3倍,那么一个task运行完了以后,另一个task马上可以补上来,就尽量让cpu core不要空闲,同时也是尽量提升spark作业运行的效率和速度,提升性能。

 

3、如何设置一个Spark Application的并行度?

spark.default.parallelism

SparkConf conf = new SparkConf()

  .set("spark.default.parallelism", "500")

 

重剑无锋:真正有分量的一些技术和点,其实都是看起来比较平凡,看起来没有那么炫酷,但是其实是你每次写完一个spark作业,进入性能调优阶段的时候,应该优先调节的事情,就是这些(大部分时候,可能资源和并行度到位了,spark作业就很快了,几分钟就跑完了)

 

炫酷:数据倾斜(100spark作业,最多10个会出现真正严重的数据倾斜问题),感冒和发烧,你不能上来就用一些偏方(癌症,用癞蛤蟆熬煮汤药);JVM调优;

《二》spark并行度 调优_第1张图片

 

 

 

你可能感兴趣的:(《二》spark并行度 调优)