采用随机森林计算参数权重(包含完整代码与完整数据格式)

前段时间在做一些气象预测方面的工作,牵扯到大量的复杂的数据分析与预处理。

该篇文章简述我在用随机森林进行数据分析,计算各类天气参数对于目标参数的贡献度,也就是参数权重大小。

首先引入各个计算工具包

from sklearn.ensemble import RandomForestClassifier
import pandas as pd
import numpy as np
import sys
import csv

接下来对处理好的天气参数csv文件的读取,即x的读取,我所用到的X是 100维的

#读取x值即10x10的风数据值,并将数据转化为numpy的array格式并输入模型
path = sys.path[0] + '/'

file = path + 'weither/data/z100_getdata.csv'

csvfile = open(file, encoding='utf-8')
csvreader = csv.reader(csvfile)

xdata = []
xname = []
timex = []
for x in csvreader:
    if x[1] == '925':
        timex.append(x[0][:8])
        x = [float(x) for x in x[2:]]
        xdata.append(x)

print(timex[:10])#该包含time的部分可以省略,是为若有缺失值,填充做的准备
for m in range(100):
    xname .append(str('x'+str(m)))
xdata.pop(-1)
xdata = np.array(xdata)
xname = np.array(xname)

#print(xdata[:5],len(xdata),type(xdata),xname[:5])

df = pd.DataFrame(xdata, columns=xname)

df['is_train'] = np.random.uniform(0, 1, len(df)) <= .75#将数据集分为训练集与测试集

接下来读取y值并进行预处理。y值是一维数据,数量要求与x的长度完全一样,yname参数保存数据的分类名

#读取y值即PM2.5的数据值,并将数据转化为numpy的array格式并输入模型
file = path + 'weither/data/sites_2016_getdata.csv'

csvfile = open(file, encoding='utf-8')
csvreader = csv.reader(csvfile)
ydataf = []
yname = []
ydata = []
timey = []
for x in csvreader:
    if x[0][0] == '2':
        timey.append(x[0])
        x = [int(x) for x in x[1:]]
        ydataf.extend(x)

print(timey[:10])
cha = set(timex) - set(timey)
print(cha)
i = 0
while i <= len(ydataf)-6:
    c = int(sum(ydataf[i:i+6])/240)
    if c > 12:
        ydata.append(13)
    else:
        ydata.append(c)
    i = i + 6
#print(ydata[:5],len(ydata),type(ydata))
for m in range(len(set(ydata))):
    yname .append(str('y'+str(m*40)))
ydata.pop(0)

np.array(ydata)
np.array(yname)

#print(ydata[:5],set(ydata),yname)

接下来是做随机森林,将参数导入,直接调用sklearn里面的RandomForestClassifier即可

df['species'] = pd.Categorical.from_codes(ydata, yname)
#print(df['species'])
df.head()
train, test = df[df['is_train']==True], df[df['is_train']==False]
features = df.columns[:100]
clf = RandomForestClassifier(n_jobs=2)

y, _ = pd.factorize(train['species'])
clf.fit(train[features], y)
preds = np.array(yname)[clf.predict(test[features])]
#print(preds)
pd.crosstab(test['species'], preds, rownames=['actual'], colnames=['preds'])

mmm = clf.feature_importances_
nnn = list(mmm)

nnn = [x*100 for x in nnn]
nnn = [float('%.5f' % x) for x in nnn]
print(nnn)

接下来是对数据的说明:

这是sklearn里面的举例数据集:一条xdata数据有四个值,对应一个y,格式是'numpy.ndarray'格式,但后来我替换成列表格式,不进行numpy转换,似乎也没有出现问题。所用到的数据有xdata\ xname\ ydata\ yname

{'xdata': array([[5.1, 3.5, 1.4, 0.2],
       [4.9, 3. , 1.4, 0.2],
       [4.7, 3.2, 1.3, 0.2],
       [4.6, 3.1, 1.5, 0.2],
       [5. , 3.6, 1.4, 0.2],
       [5.4, 3.9, 1.7, 0.4],
       [4.6, 3.4, 1.4, 0.3],
       [6. , 3. , 4.8, 1.8],
       [6.9, 3.1, 5.4, 2.1],
       [6.7, 3.1, 5.6, 2.4],
        ......
       [6.9, 3.1, 5.1, 2.3],
       [5.8, 2.7, 5.1, 1.9],
       [6.8, 3.2, 5.9, 2.3],
       [6.7, 3.3, 5.7, 2.5],
       [6.7, 3. , 5.2, 2.3],
       [6.3, 2.5, 5. , 1.9],
       [6.5, 3. , 5.2, 2. ],
       [6.2, 3.4, 5.4, 2.3],
       [5.9, 3. , 5.1, 1.8]]),
 'ydata': array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
       0, 0, 0, 0, 0,......, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
       1, 1, 1, 1, 1, 1, 1, 1, 1, 1,......, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]),
 'yname': array(['setosa', 'versicolor', 'virginica'], dtype=' 
  

 

 

 

 

你可能感兴趣的:(程序员)